Review—New Generation Electrode Materials for Sensitive Detection

2015 ◽  
Vol 163 (3) ◽  
pp. H159-H170 ◽  
Author(s):  
Rajeev Jain ◽  
Nimisha Jadon ◽  
Kshiti Singh
2018 ◽  
Vol 15 ◽  
pp. 5943-5949
Author(s):  
Selvaraj Shanthi ◽  
Yasuhiro Hayakawa ◽  
Suru Ponnusamy ◽  
Hiroya Ikeda ◽  
Chellamuthu Muthamizhchelvan

Carbon fabrics are the new generation promising electrode materials for super capacitors owing to their high electrical conductivity, high chemical stability and low thermal expansion. In this work, 2D-MoS2 nanostructures have been successfully deposited over the commercially available carbon fabric by hydrothermal approach, using silicontungstic acid as an additive. MoS2 nanostructures – carbon fabric was broadly characterized using XRD, FESEM and Raman Spectroscopy. XRD patterns indicated that the fabricated MoS2 nanoparticles can be indexed to hexagonal (2H) and rhombohedral (3R) phases. FESEM images revealed the formation of hierarchical 2D MoS2 nanosheets arranged in a nanosphere like morphology over the carbon fabric. The electrochemical behavior of the MoS2 - carbon fabric and commercially available bare carbon fabric were studied using cyclic voltammetry analysis with different scan rates. The MoS2-carbon fabric exhibited an excellent electrochemical performance with a specific capacitance of 441 F/g at a scan rate of 10mV/s. The good cyclic behavior with symmetric charging/discharging curves, constant specific capacitance for longer scan rates, suggesting that the MoS2- carbon fabric electrode is a potential electrode material for high power applications.


Transparent conducting electrodes (TCEs) play a vital role for the fabrication of solar cells and pivoted almost 50% of the total cost. Recently several materials have been identified as TCEs in solar cell applications. Still, indium tin oxide (ITO) based TCEs have dominated the market due to their outstanding optical transparency and electrical conductivity. However, inadequate availability of indium has increased the price of ITO based TCEs, which attracts the researchers to find alternative materials to make solar technology economical. In this regard, various kinds of conducting materials are available and synthesized worldwide with high electrical conductivity and optical transparency in order to find alternative to ITO based electrodes. Especially, new generation nanomaterials have opened a new window for the fabrication of cost effective TCEs. Carbon nanomaterials such as graphene, carbon nanotubes (CNTs), metal nanowires (MNWs) and metal mesh (MMs) based electrodes especially attracted the scientific community for fabrication of low cost photovoltaic devices. In addition to it, various conducting polymers such as poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) based TCEs have also showed their candidacy as an alternative to ITO based TCEs. Thus, the present chapter gives an overview on materials available for the TCEs and their possible use in the field of solar cell technology


2020 ◽  
Vol 4 (3) ◽  
pp. 729-749 ◽  
Author(s):  
Ji-Shi Wei ◽  
Tian-Bing Song ◽  
Peng Zhang ◽  
Xiao-Qing Niu ◽  
Xiao-Bo Chen ◽  
...  

This review summarizes the recent progress in the design and preparation of multiple electrochemical energy storage devices utilizing carbon dots, and elaborates the positive effects of carbon dots on the resulting electrodes and devices.


2015 ◽  
Vol 1772 ◽  
pp. 1-6 ◽  
Author(s):  
Houman Yaghoubi ◽  
Anand Kumar Santhanakrishn ◽  
Md Khan ◽  
J. Thomas Beatty ◽  
Arash Takshi

ABSTRACTHarvesting solar energy, is only one of the incentives of incorporating photosynthetic proteins in electrochemical devices. Understanding the interface of photosynthetic protein complexes and organic\inorganic underlying electrodes can give rise to development of new generation of nano-bioelectronics for other applications such as sensing, as well. Previous approaches in fabricating photosynthetic bio-hybrid electrochemical solar cells were mainly based on metallic electrodes with protein complexes attached, either directly or through linker molecules. Due to the energy band structure in semiconductors, they potentially can be useful for selective charge transfer in an electrochemical device. In the current study, a two terminal sealed bio-hybrid solar cell device was fabricated comprising of hydrothermally grown ZnO nanowires on fluorine doped tin oxide (FTO) glass working electrode, a Pt counter electrode, and methyl viologen (MV) as a single diffusible redox mediator. The ZnO working electrode was initially characterized using scanning electron microscopy (XRD) and X-ray diffraction (XRD). A solution of dimeric Rhodobacter sphaeroides – light harvesting 1 (RC-LH1) core complexes and redox electrolyte was injected into the cavity between working and counter electrodes. Such structure resulted in ∼0.64 µA.cm-2 photocurrent density and ∼0.24 V open circuit potential difference in the dark and under illumination. Additionally, the device stability tests demonstrated that the current response of such devices remained unchanged after 33 hours storage in the dark.


Sign in / Sign up

Export Citation Format

Share Document