Alkalized SnS Nanoflakes with Enhanced Sensing Properties towards Methanol Vapor

2020 ◽  
Vol 9 (12) ◽  
pp. 121013
Author(s):  
Yuxiang Qin ◽  
Chenxiang Bai ◽  
Peilun Qiu
2019 ◽  
Vol 27 (02) ◽  
pp. 1950106
Author(s):  
SİBEL ŞEN

To determine thin films’ properties of commercially available gallic acid molecule, they were deposited onto a suitable substrate using spin coater. UV–Visible absorption spectroscopy and atomic force microscopy (AFM) were employed for the characterization of the deposited thin films. Characterization results obtained by these two techniques indicated that the gallic acid molecules are suitable for transfer onto a glass or quartz substrate. Gas-sensing properties and thickness of these thin films were elucidated using surface plasmon resonance (SPR). Thickness values of spun thin films were obtained at different spinning speeds. Then, the gas-sensing properties were examined by exposing them to the vapors of four volatile organic compounds (VOCs). It was found that the spun films of this material were selective for methanol vapor yielding rapid response and recovery time and thin films of gallic acid exhibited reversible changes in the optical behavior, which makes them suitable for practical methanol-detection applications.


2014 ◽  
Vol 809-810 ◽  
pp. 731-736
Author(s):  
Qin Zhu ◽  
Yu Min Zhang ◽  
Jin Zhang ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

A new gas sensor with high response and selectivity was fabricated by using molecularly imprinted powders (MIPs) which provide special recognition sites to methanol. The MIPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared spectrometer (FT-IR), respectively. The gas sensing properties of MIPs to methanol were investigated. The experimental results indicate that the sensors based on the MIPs show excellent gas sensing properties to methanol vapor, and the properties of the sensor with x=6:10 (x= methyl acrylic acid: LaFeO3, molar ratio) are the best. At the optimal operating temperature of 130°C, the response of the sensor (x=6:10) to 1 ppm methanol is 21, and the response and recovery times are 57 s and 67 s, respectively.


Author(s):  
Mayada Hbous

Three thin films were prepared by PVD starting from WO3 powder with thicknesses (998.7, 1620, 2240 nm) respectively on glass substrates under limited thermal and pressure conditions, studied their I-V characteristics and calculated the sensitivity for 100 ppm of METHANOL vapor adsorption (The temperature of the films have been changed from 25°C to 350°C). A comparison among them was achieved at 300 °C as an operating degree and found that the 1620 nm WO3 has more sensitivity and has more power to adsorb for methanol vapor on it.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
S Cosa ◽  
AM Viljoen ◽  
SK Chaudhary ◽  
W Chen

2013 ◽  
Vol 28 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Shuang XU ◽  
Ying YANG ◽  
Hong-Yuan WU ◽  
Chao JIANG ◽  
Li-Qiang JING ◽  
...  

2020 ◽  
Vol 17 (6) ◽  
pp. 472-478
Author(s):  
Wei-tao Gong ◽  
Wei-dong Qu ◽  
Guiling Ning

Two pyridinium amide-based receptors L1 and L2 with a small difference of H-bond position of the amide have been synthesized and characterized. Interestingly, they exhibited a huge difference in sensing towards AcO- and H2PO4 -, respectively. Receptor L1 was found to be ‘naked-eye’ selective for AcO- anions, while receptor L2 showed clear fluorescence enhancement selective to H2PO4 - anion. The recognition ability has been established by fluorescence emission, UV-vis spectra, and 1HNMR titration.


2013 ◽  
Vol 179 ◽  
pp. 42-48 ◽  
Author(s):  
Heping Shi ◽  
Jinwei Yang ◽  
Xiuqing Dong ◽  
Li Fang ◽  
Chuan Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document