Corrosion Inhibition of 304 Stainless Steel, Copper and Nickel Metals Using Mesoporous Silica (MCM- 41) and 2, 5-Distyrylpyrazine Photopolymer

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 872 ◽  
Author(s):  
Mohammad ◽  
Bepari ◽  
Aravamudhan ◽  
Kuila

Fischer–Tropsch (FT) synthesis was carried out in a 3D printed stainless steel (SS) microchannel microreactor using bimetallic Co-Ru catalysts on three different mesoporous silica supports. CoRu-MCM-41, CoRu-SBA-15, and CoRu-KIT-6 were synthesized using a one-pot hydrothermal method and characterized by Brunner–Emmett–Teller (BET), temperature programmed reduction (TPR), SEM-EDX, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The mesoporous catalysts show the long-range ordered structure as supported by BET and low-angle XRD studies. The TPR profiles of metal oxides with H2 varied significantly depending on the support. These catalysts were coated inside the microchannels using polyvinyl alcohol and kinetic performance was evaluated at three different temperatures, in the low-temperature FT regime (210–270 °C), at different Weight Hourly Space Velocity (WHSV) in the range of 3.15–25.2 kgcat.h/kmol using a syngas ratio of H2/CO = 2. The mesoporous supports have a significant effect on the FT kinetics and stability of the catalyst. The kinetic models (FT-3, FT-6), based on the Langmuir–Hinshelwood mechanism, were found to be statistically and physically relevant for FT synthesis using CoRu-MCM-41 and CoRu-KIT-6. The kinetic model equation (FT-2), derived using Eley–Rideal mechanism, is found to be relevant for CoRu-SBA-15 in the SS microchannel microreactor. CoRu-KIT-6 was found to be 2.5 times more active than Co-Ru-MCM-41 and slightly more active than CoRu-SBA-15, based on activation energy calculations. CoRu-KIT-6 was ~3 and ~1.5 times more stable than CoRu-SBA-15 and CoRu-MCM-41, respectively, based on CO conversion in the deactivation studies.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5016
Author(s):  
Jae-Yeon Kim ◽  
Inji Shin ◽  
Jai-Won Byeon

Tea tree extract, containing antioxidant constituents α-terpineol, terpinen-4-ol, and α-terpinene, has a wide range of applications in the cosmetic, food, and pharmaceutical industries. In this study, tea tree extract showed an anticorrosive effect under 1 M HCl solution on mild steel (MS) and 304 stainless steel (STS). Uniform corrosion for MS and pitting corrosion for STS at 298 K were retarded, with inhibition efficiencies of 77% and 86%, respectively. The inhibition of uniform and pitting corrosion was confirmed by scanning electron microscopy and laser scanning confocal microscopy in terms of surface roughness and pitting morphologies. The most effective constituent contributing to the inhibitory performance of tea tree extract was revealed to be α-terpineol, with an inhibition efficiency of 83%. The adsorption of tea tree extract was confirmed by surface characterization analysis using Fourier transform infrared spectroscopy, Raman spectroscopy, and Electrochemical impedance spectroscopy. Interestingly, G- and D-peaks of Raman spectra were detected from the inhibited steels, and this finding is the first example in the corrosion inhibition field. The anticorrosion mechanism can be explained by the formation of organic-Fe complexes on the corroded steel surface via electron donor and acceptor interactions in the presence of an oxygen atom of the hydroxyl group or ether of organic inhibitors.


Author(s):  
Dr. Abhay Singh

The corrosion inhibition of 304 stainless steel in 1.0 M H2SO4 has been investigated in the presence of Henna leaves (Lawsonia Inermis) extract using weight loss measurement and Scanning Electron Microscope (SEM) analysis. The study indicates that the corrosion inhibition efficiency increases with the increase in concentration of Henna leaves extract and decreases with increase in temperature. SEM analysis indicated the changes in metal surface morphology in the presence of inhibitor. The result obtained indicated that Henna leaves extract act as an efficient green corrosion inhibitor for 304 Stainless Steel.


Sign in / Sign up

Export Citation Format

Share Document