The Group I Alkali Metals in Ionic Liquids: Electrodeposition and Determination of Their Kinetic and Thermodynamic Properties

2019 ◽  
Vol 33 (7) ◽  
pp. 523-535 ◽  
Author(s):  
Rahmat Wibowo ◽  
Leigh Aldous ◽  
Sarah E. Ward Jones ◽  
Richard G. Compton

Author(s):  
Dzmitry H Zaitsau ◽  
Ralf Ludwig ◽  
Sergey P. Verevkin

Ionic liquids are described by a delicate balance of Coulomb interaction, hydrogen bonding and dispersion forces. Dissecting the different types of interaction from thermodynamic properties is still a challenge. Here,...


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


2020 ◽  
Vol 16 (5) ◽  
pp. 652-659
Author(s):  
Asiye A. Avan ◽  
Hayati Filik

Background: An Ionic Liquid-based based Dispersive Liquid-Liquid Microextraction (IL-DLLME) method was not applied to preconcentration and determination of bilirubin. Ionic Liquids (ILs) are new chemical compounds. In recent years, Ionic Liquids (ILs) have been employed as alternative solvents to toxic organic solvents. Due to these perfect properties, ILs have already been applied in many analytical extraction processes, presenting high extraction yield and selectivity for analytes. Methods: In this study, IL-DLLME was applied to biological samples (urine and serum) for the spectrophotometric detection of bilirubin. For bilirubin analysis, the full-color development was based on the reaction with periodate in the presence of hydrochloric acid. The high affinity of bilirubin for the ionic liquid phase gave extraction percentages above 98% in 0.3 M HCl solution. Results: Several IL-extraction parameters were optimized and room temperature ionic liquid 1-butyl- 1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and ethanol were used as extraction and disperser solution. The linear range was found in the range of 0.5-6.0 μM (0.3-3.5 μg mL-1) and the limits of detection of the proposed method was 0.5 μM (0.3 μg mL-1). The proposed method was applied for the preconcentration and separation of trace bilirubin in real urine samples. Also, the recoveries for bilirubin in spiked biological samples (urine and serum) were found to be acceptable, between 95-102%. Conclusion: The proposed IL-DLLMEapproach was employed for the enrichment and determination of trace levels of bilirubin in urine samples using NaIO4 as an oxidizing agent and Uv-vis spectrophotometric detection. The periodate oxidation of bilirubin is rapid, effective, selective, and simple to perform. The method contains only HCl, NaOI4, and an anionic surfactant. The method may be useful for economizing in the consumption of reagents in bilirubin determining. The IL-DLLMEmethod ensures a high yield and has a low toxicity no skin sensitization, no mutagenicity and no ecotoxicity in an aquatic environment since only very low quantities of an IL is required. For full-color formation, no any extra auxiliary reagents are required. Besides, the IL-DLLME technique uses a low-cost instrument such as Uv-vis which is present in most of the medical laboratories.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 295-303 ◽  
Author(s):  
Jianzhi Zhang ◽  
Masatoshi Nei

Antennapedia (Antp)-class homeobox genes are involved in the determination of pattern formation along the anterior-posterior axis of the animal embryo. A phylogenetic analysis of Antp-class homeodomains of the nematode, Drosophila, amphioxus, mouse, and human indicates that the 13 cognate group genes of this gene family can be divided into two major groups, i.e., groups I and II. Group I genes can further be divided into subgroups A (cognate groups 1–2), B (cognate group 3), and C (cognate groups 4–8), and group II genes can be divided into subgroups D (cognate groups 9–10) and E (cognate groups 11–13), though this classification is somewhat ambiguous. Evolutionary distances among different amino acid sequences suggest that the divergence between group I and group II genes occurred ∼1000 million years (MY) ago, and the five different subgroups were formed by ∼600 MY ago, probably before the divergence of Pseudocoelomates (e.g., nematodes) and Coelomates (e.g., insects and chordates). Our results show that the genes that are phylogenetically close are also closely located in the chromosome, suggesting that the colinearity between the gene expression and gene arrangement was generated by successive tandem gene duplications and that the gene arrangement has been maintained by some sort of selection.


Author(s):  
Silvana M. Álvarez ◽  
Natalia E. Llamas ◽  
Mónica B. Álvarez ◽  
Jorge E. Marcovecchio ◽  
Mariano Garrido ◽  
...  

2021 ◽  
Vol 188 (2) ◽  
Author(s):  
Tomasz Rębiś ◽  
Michał Niemczak ◽  
Patrycja Płócienniczak ◽  
Juliusz Pernak ◽  
Grzegorz Milczarek

AbstractAn electrochemical sensor was fabricated utilizing ionic liquids possessing cations with long alkyl chains such as trimethyl octadecylammonium and behenyl trimethylammonium and ascorbate anion. The ionic liquids were drop-coated onto the electrode. Thin modifying layers were prepared. Cyclic voltammetric investigations revealed electrostatic interactions between the electrochemical probes and the modified surface, proving that a positive charge was established at the film surface. Hence, negatively charged species such as nitrite can be pre-concentrated on the surface of presented modified electrodes. The fabricated electrodes have been used as a voltammetric sensor for nitrite. Due to the electrostatic accumulation properties of long alkyl cation, the assay exhibits a remarkable improvement in the voltammetric response toward nitrite oxidation. The influence of pH on the electrode response was thoroughly investigated, and the mechanism of the electrode was established. The developed sensor showed a linear electrochemical response in the range 1.0–50 μM with a detection limit of 0.1 μM. The electrode revealed good storage stability, reproducibility, and anti-interference ability. The determination of nitrite performed in curing salts brought satisfactory results. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document