Mixed Strategy Combination of Pressure and Velocity Control for Chemical Mechanical Planarization of Patterned Wafers

2012 ◽  
Vol 33 (4) ◽  
pp. 046001 ◽  
Author(s):  
Chenwei Wang ◽  
Yuling Liu ◽  
Xinhuan Niu ◽  
Jianying Tian ◽  
Baohong Gao ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2217
Author(s):  
Hoseong Jo ◽  
Da Sol Lee ◽  
Seon Ho Jeong ◽  
Hyun Seop Lee ◽  
Hae Do Jeong

Chemical mechanical planarization (CMP) is frequently used in semiconductor manufacturing to polish the surfaces of multiple layers in a wafer. The CMP uses a slurry that aids in fabricating a smooth surface by removing the excess materials. However, excessive use of slurry affects the environment and is expensive. Therefore, we propose a hybrid slurry supply system that combines ionization and atomization to reduce slurry consumption and improve the polishing quality. The proposed hybrid system atomizes the ionized slurry using electrolysis and a spray slurry nozzle. We compared the material removal rate (MRR) and polishing uniformity based on the slurry supply systems used in Cu and SiO2 non-patterned wafers. Additionally, the step height reduction and dishing were compared in the Cu-patterned wafers. The experimental analysis using the hybrid system confirmed a 23% and 25% improvement in the MRR and uniformity, respectively, in comparison with the conventional slurry supply system. This improvement can be attributed to the chemical activation and uniform supply of the ionized and atomized slurries, respectively. Moreover, a significant reduction was observed in dishing and pitch-size dependence. Furthermore, the proposed system prevents heat accumulation between the CMP processes, serving as a cooling system.


2007 ◽  
Vol 22 (3) ◽  
pp. 777-787 ◽  
Author(s):  
Hyun-Goo Kang ◽  
Hyung-Soon Park ◽  
Ungyu Paik ◽  
Jea-Gun Park

The effects of the molecular weight and concentration of poly(acrylic acid) (PAA) with different primary abrasive sizes in ceria slurry on the nitride film loss, removal rate, film surface roughness, and removal selectivity of SiO2-to-Si3N4 films were investigated by performing chemical mechanical polishing (CMP) experiments using blanket and patterned wafers. In the case of the blanket wafers, we found that for a lower PAA molecular weight, the removal selectivity of SiO2-to-Si3N4 films increased more significantly with increasing PAA concentration in slurry containing a larger primary abrasive size. For the patterned wafers, with a higher PAA molecular weight in the ceria slurry suspension, the erosion of the Si3N4 film was less, but the removed amount was also smaller, and the surface roughness became worse after CMP. These results can be qualitatively explained by the layer of PAA adsorbed on the film surface, in terms of electrostatic interaction and rheological behavior.


2000 ◽  
Vol 612 ◽  
Author(s):  
Changming Jin ◽  
J. Liu ◽  
X. Li ◽  
C. Coyle ◽  
J. Birnbaum ◽  
...  

AbstractSpin-on mesoporous silica films were prepared on eight-inch wafers at SEMATECH by condensation of a silicate network around surfactant micellar structures. Copper single-damascene one-level test structures were built using mesoporous silica as the intermetal dielectric. No major structural failures were observed after chemical mechanical planarization on both blanket films and patterned wafers, indicating relatively good mechanical integrity for a highly porous structure. A simple silane spin-coating step used at SEMATECH on the films appears to be insufficient for complete dehydroxylation and silylation. The electrical test results on the metal comb structures showed good capacitance and leakage current distributions. However, capacitance and leakage current changes were observed after each post-CMP process step, and these changes could be correlated to moisture desorption/outgassing, which was also noted during k measurement. With controlled film synthesis and dehydroxylation conditions, mesoporous silica films with k ≤2.0 and elastic modulus of 4.0 GPa have been synthesized at PNNL. The results of the Cu one-level metal screening tests at SEMATECH combined with properties obtained at PNNL indicate that mesoporous molecularly-templated silicate films hold promise as ultra low k intermetal dielectrics.


2002 ◽  
Vol 722 ◽  
Author(s):  
Ram W. Sabnis ◽  
Mary J. Spencer ◽  
Douglas J. Guerrero

AbstractNovel organic, polymeric materials and processes of depositing thin films on electronics substrates by chemical vapor deposition (CVD) have been developed and the lithographic behavior of photoresist coated over these CVD films at deep ultraviolet (DUV) wavelength has been evaluated. The specific monomers synthesized for DUV applications include [2.2](1,4)- naphthalenophane, [2.2](9,10)-anthracenophane and their derivatives which showed remarkable film uniformity on flat wafers and conformality over structured topography wafers, upon polymerization by CVD. The chemical, physical and optical properties of the deposited films have been characterized by measuring parameters such as thickness uniformity, solubility, conformality, adhesion to semiconductor substrates, ultraviolet-visible spectra, optical density, optical constants, defectivity, and resist compatibility. Scanning electron microscope (SEM) photos of cross-sectioned patterned wafers showed verticle profiles with no footing, standing waves or undercut. Resist profiles down to 0.10 νm dense lines and 0.09 νm isolated lines were achieved in initial tests. CVD coatings generated 96-100% conformal films, which is a substantial improvement over commercial spin-on polymeric systems. The light absorbing layers have high optical density at 248 nm and are therefore capable materials for DUV lithography applications. CVD is a potentially useful technology to extend lithography for sub-0.15 νm devices. These films have potential applications in microelectronics, optoelectronics and photonics.


Sign in / Sign up

Export Citation Format

Share Document