scholarly journals AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells

2009 ◽  
Vol 296 (4) ◽  
pp. C672-C681 ◽  
Author(s):  
Kenneth R. Hallows ◽  
Rodrigo Alzamora ◽  
Hui Li ◽  
Fan Gong ◽  
Christy Smolak ◽  
...  

Acidic luminal pH and low [HCO3−] maintain sperm quiescent during maturation in the epididymis. The vacuolar H+-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO3−, induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N 6-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [32P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK.

2008 ◽  
Vol 294 (2) ◽  
pp. C488-C494 ◽  
Author(s):  
Núria M. Pastor-Soler ◽  
Kenneth R. Hallows ◽  
Christy Smolak ◽  
Fan Gong ◽  
Dennis Brown ◽  
...  

In the epididymis, low luminal bicarbonate and acidic pH maintain sperm quiescent during maturation and storage. The vacuolar H+-ATPase (V-ATPase) in epididymal clear cells plays a major role in luminal acidification. We have shown previously that cAMP, luminal alkaline pH, and activation of the bicarbonate-regulated soluble adenylyl cyclase (sAC) induce V-ATPase apical accumulation in these cells, thereby stimulating proton secretion into the epididymal lumen. Here we examined whether protein kinase A (PKA) is involved in this response. Confocal immunofluorescence labeling on rat epididymis perfused in vivo showed that at luminal acidic pH (6.5), V-ATPase was distributed between short apical microvilli and subapical endosomes. The specific PKA activator N6-monobutyryl-3′-5′-cyclic monophosphate (6-MB-cAMP, 1 mM) induced elongation of apical microvilli and accumulation of V-ATPase in these structures. The PKA inhibitor myristoylated-PKI (mPKI, 10 μM) inhibited the apical accumulation of V-ATPase induced by 6-MB-cAMP. Perfusion at pH 6.5 with 8-(4-chlorophenylthio)-2- O-methyl-cAMP (8CPT-2- O-Me-cAMP; 10 μM), an activator of the exchange protein activated by cAMP (Epac), did not induce V-ATPase apical accumulation. When applied at a higher concentration (100 μM), 8CPT-2- O-Me-cAMP induced V-ATPase apical accumulation, but this effect was completely inhibited by mPKI, suggesting crossover effects on the PKA pathway with this compound at high concentrations. Importantly, the physiologically relevant alkaline pH-induced apical V-ATPase accumulation was completely inhibited by pretreatment with mPKI. We conclude that direct stimulation of PKA activity by cAMP is necessary and sufficient for the alkaline pH-induced accumulation of V-ATPase in clear cell apical microvilli.


2005 ◽  
Vol 288 (5) ◽  
pp. H2412-H2421 ◽  
Author(s):  
Markus Frederich ◽  
Li Zhang ◽  
James A. Balschi

The hypothesis was tested that hypoxia increases AMP-activated protein kinase (AMPK) activity independently of AMP concentration ([AMP]) in heart. In isolated perfused rat hearts, cytosolic [AMP] was changed from 0.2 to 16 μM using metabolic inhibitors during both normal oxygenation (95% O2-5% CO2, normoxia) and limited oxygenation (95% N2-5% CO2, hypoxia). Total AMPK activity measured in vitro ranged from 2 to 40 pmol·min−1·mg protein−1 in normoxic hearts and from 5 to 55 pmol·min−1·mg protein−1 in hypoxic hearts. The dependence of the in vitro total AMPK activity on the in vivo cytosolic [AMP] was determined by fitting the measurements from individual hearts to a hyperbolic equation. The [AMP] resulting in half-maximal total AMPK activity ( A0.5) was 3 ± 1 μM for hypoxic hearts and 28 ± 13 μM for normoxic hearts. The A0.5 for α2-isoform AMPK activity was 2 ± 1 μM for hypoxic hearts and 13 ± 8 μM for normoxic hearts. Total AMPK activity correlated with the phosphorylation of the Thr172 residue of the AMPK α-subunit. In potassium-arrested hearts perfused with variable O2 content, α-subunit Thr172 phosphorylation increased at O2 ≤ 21% even though [AMP] was <0.3 μM. Thus hypoxia or O2 ≤ 21% increased AMPK phosphorylation and activity independently of cytosolic [AMP]. The hypoxic increase in AMPK activity may result from either direct phosphorylation of Thr172 by an upstream kinase or reduction in the A0.5 for [AMP].


2011 ◽  
Vol 32 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Yugo Tsuchiya ◽  
Fiona C. Denison ◽  
Richard B. Heath ◽  
David Carling ◽  
David Saggerson

In adult rat cardiac myocytes adrenaline decreased AMPK (AMP-activated protein kinase) activity with a half-time of approximately 4 min, decreased phosphorylation of AMPK (α-Thr172) and decreased phosphorylation of ACC (acetyl-CoA carboxylase). Inactivation of AMPK by adrenaline was through both α1- and β-ARs (adrenergic receptors), but did not involve cAMP or calcium signalling, was not blocked by the PKC (protein kinase C) inhibitor BIM I (bisindoylmaleimide I), by the ERK (extracellular-signal-regulated kinase) cascade inhibitor U0126 or by PTX (pertussis toxin). Adrenaline caused no measurable change in LKB1 activity. Adrenaline decreased AMPK activity through a process that was distinct from AMPK inactivation in response to insulin or PMA. Neither adrenaline nor PMA altered the myocyte AMP:ATP ratio although the adrenaline effect was attenuated by oligomycin and by AICAR (5-amino-4-imidazolecarboxamide-1-β-D-ribofuranoside), agents that mimic ‘metabolic stress’. Inactivation of AMPK by adrenaline was abolished by 1 μM okadaic acid suggesting that activation of PP2A (phosphoprotein phosphatase 2A) might mediate the adrenaline effect. However, no change in PP2A activity was detected in myocyte extracts. Adrenaline increased phosphorylation of the AMPK β-subunit in vitro but there was no detectable change in vivo in phosphorylation of previously identified AMPK sites (β-Ser24, β-Ser108 or β-Ser182) suggesting that another site(s) is targeted.


Circulation ◽  
2006 ◽  
Vol 114 (24) ◽  
pp. 2655-2662 ◽  
Author(s):  
Wei Sun ◽  
Tzong-Shyuan Lee ◽  
Minjia Zhu ◽  
Chunang Gu ◽  
Yinsheng Wang ◽  
...  

2016 ◽  
Vol 130 (17) ◽  
pp. 1523-1533 ◽  
Author(s):  
Chun-Yin Huang ◽  
An-Chen Chang ◽  
Hsien-Te Chen ◽  
Shih-Wei Wang ◽  
Yuan-Shun Lo ◽  
...  

Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo. We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.


Bone ◽  
2010 ◽  
Vol 47 ◽  
pp. S44
Author(s):  
M. Shah⁎ ◽  
A. Bataveljic ◽  
T.R. Arnett ◽  
B. Viollet ◽  
L.K. Saxon ◽  
...  

2006 ◽  
Vol 281 (43) ◽  
pp. 32207-32216 ◽  
Author(s):  
Marianne Suter ◽  
Uwe Riek ◽  
Roland Tuerk ◽  
Uwe Schlattner ◽  
Theo Wallimann ◽  
...  

AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK α1β1γ1 and α2β2γ1 by their upstream kinases (Ca2+/calmodulin-dependent protein kinase kinase-β and LKB1-MO25α-STRADα), the deactivation by protein phosphatase 2Cα, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 μmol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 μm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK α-subunits at Thr-172 by protein phosphatase 2Cα is attenuated by AMP. Furthermore, it is shown that neither purified NAD+ nor NADH alters the activity of AMPK in a concentration range of 0–300 μm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation.


2009 ◽  
Vol 30 (3) ◽  
pp. 480-492 ◽  
Author(s):  
Jun Li ◽  
Louise D McCullough

AMP-activated protein kinase (AMPK) is a serine threonine kinase that is highly conserved through evolution. AMPK is found in most mammalian tissues including the brain. As a key metabolic and stress sensor/effector, AMPK is activated under conditions of nutrient deprivation, vigorous exercise, or heat shock. However, it is becoming increasingly recognized that changes in AMPK activation not only signal unmet metabolic needs, but also are involved in sensing and responding to ‘cell stress’, including ischemia. The downstream effect of AMPK activation is dependent on many factors, including the severity of the stressor as well as the tissue examined. This review discusses recent in vitro and in vivo studies performed in the brain/neuronal cells and vasculature that have contributed to our understanding of AMPK in stroke. Recent data on the potential role of AMPK in angiogenesis and neurogenesis and the interaction of AMPK with 3-hydroxy-3-methy-glutaryl-CoA reductase inhibitors (statins) agents are highlighted. The interaction between AMPK and nitric oxide signaling is also discussed.


2021 ◽  
Author(s):  
Xiaocheng Huang ◽  
Jian Sun ◽  
Chenchen Bian ◽  
Shanghong Ji ◽  
Hong ji

Abstract Background: The liver is the primary organ for frontline immune defense and lipid metabolism. Excessive lipid accumulation in the liver severely affects its metabolic homeostasis and causes metabolic diseases. Docosahexaenoic acid (DHA) is known for its beneficial effects on lipid metabolism and anti-inflammation, but its molecular mechanism remains unknown, especially in fish. In this study, we evaluated the protective effects of DHA on hepatic steatosis of grass carp (Ctenopharyngodon idella) in vivo and in vitro and mainly focused on lipogenesis and inflammation. Grass carp were fed with purified diets supplemented with 0%, 0.5% and 1% DHA for 8 weeks in vivo. Hepatocytes were treated with palmitic acid (PA) (200 μM) with or without DHA (50 or 100 μM) for 24 h in vitro. In addition, Compound C (CC, the inhibitor of AMP-activated protein kinase) was used to examine the mechanism of DHA on hepatic steatosis in vitro.Results: In this study, 1% DHA significantly decreased the liver triglyceride (TG), malondialdehyde (MDA), serum tumor necrosis factor α (TNFα) and nuclear factor kappa B (NFκB) contents. DHA (100 μM) effectively attenuated PA-induced lipid accumulation (P<0.05). Furthermore, DHA significantly inhibited endoplasmic reticulum (ER) stress and stimulated the expression of AMP-activated protein kinase (AMPK) and its downstream factors related to hepatic inflammation and lipogenesis in vivo and in vitro. However, the effects of DHA could be abrogated by CC in vitro.Conclusions: DHA exerted a protective effect on hepatic steatosis by inhibiting ER stress, improving antioxidant ability, relieving hepatic inflammation and inhibiting hepatic lipogenesis in an AMPK-dependent manner. Our findings give a theoretical foundation for further elucidation of the beneficial role of DHA in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document