Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21Waf1/Cip1

2004 ◽  
Vol 287 (6) ◽  
pp. C1541-C1546 ◽  
Author(s):  
R. Göke ◽  
P. Barth ◽  
A. Schmidt ◽  
B. Samans ◽  
B. Lankat-Buttgereit

We show that the recently discovered tumor suppressor pdcd4 represses the transcription of the mitosis-promoting factor cyclin-dependent kinase (CDK)1/cdc2 via upregulation of p21Waf1/Cip1. p21Waf1/Cip1 inhibits CDK4/6 and CDK2. Decrease of CDK4/6 and CDK2 enhances the binding of pRb to E2F/DP, which in turn together bind to and repress the cdc2 promoter. Upregulation of CDK1/cdc2 accompanied by a malignant change was previously reported in colon cancer. We show that expression of pdcd4 as an indirect suppressor of CDK1/cdc2 is lost in progressed carcinomas of lung, breast, colon, and prostate. Furthermore, it seems that localization and expression of pdcd4 directly correlate with tumor progression. Finally, the CDK1/cdc2 inhibitor roscovitine reduces the proliferation of several tumor cell lines, suggesting that inhibition of CDK1/cdc2 may be a useful strategy against malignant transformation. Therefore, pdcd4 might serve as a novel target for antineoplastic therapies.

2021 ◽  
Author(s):  
◽  
Jens Rödig

Ubiquitination is regarded as one of the key post-translational modifications in nearly all biological processes, endowed with numerous layers of complexity. Deubiquitinating enzymes (DUBs) dynamically counterbalance ubiquitination events by deconjugating ubiquitin signals from substrates. Dysregulation of the ubiquitin code and its negative regulators drive various pathologies, such as neurological disorders and cancer. The DUB ubiquitin-specific peptidase 22 (USP22) is well-known for its essential role in the human Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, mediating the removal of monoubiquitination events from Histone 2A and 2B (H2A and -B), thereby regulating gene transcription. In cancer, USP22 was initially described as a part of an 11-gene expression signature profile, predicting tumor metastasis, reoccurrence and death after therapy in a wide range of tumor cells. However, novel roles for USP22 have emerged recently, accrediting USP22 essential roles in regulating tumor development as well as apoptotic cell death signaling. One of the hallmarks of cancer is the evasion of cell death, especially apoptosis, a form of programmed cell death (PCD). Necroptosis, a regulated form of necrosis, is regarded as an attractive therapeutic strategy to overcome apoptosis-resistance in tumor cells, although a profound understanding of the exact signaling cascade still remains elusive. Nevertheless, several ubiquitination and deubiquitination events are described in fine-tuning necroptotic signaling. In this study, we describe a novel role for USP22 in regulating necroptotic cell death signaling in human tumor cell lines. USP22 depletion significantly delayed TNFa/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFa-induced nuclear factor-kappa B (NF-KB) signaling or TNFa-mediated extrinsic apoptosis. Intriguingly, re-expression of USP22 wildtype in the USP22 knockout background could re-sensitize HT-29 cells to TBZ-induced necroptosis, whereas re-constitution with the catalytic inactive mutant USP22 Cys185Ser did not rescue susceptibility to TBZ-induced necroptosis, confirming the USP22 DUB-function a pivotal role in regulating necroptotic cell death. USP22 depletion facilitated ubiquitination and unexpectedly also phosphorylation of Receptor-interacting protein kinase 3 (RIPK3) during necroptosis induction, as shown by Tandem Ubiquitin Binding Entities (TUBE) pulldowns and in vivo (de)ubiquitination immunoprecipitations. To substantiate our findings, we performed mass-spectrometric ubiquitin remnant profiling and identified the three novel USP22-regulated RIPK3 ubiquitination sites Lysine (K) 42, K351 and K518 upon TBZ-induced necroptosis. Further assessment of these ubiquitination sites unraveled, that mutation of K518 in RIPK3 reduced necroptosis-associated RIPK3 ubiquitination and additionally affected RIPK3 phosphorylation upon necroptosis induction. At the same time, genetic knock-in of RIPK3 K518R sensitizes tumor cells to TNFa-induced necroptotic cell death and amplified necrosome formation. In summary we identified USP22 as a new regulator of TBZ-induced necroptosis in various human tumor cell lines and further unraveled the distinctive role of DUBs and (de)ubiquitination events in controlling programmed cell death signaling.


2021 ◽  
Author(s):  
Wei-Hsiung Yang ◽  
Andrew P. George ◽  
William H. Yang ◽  
Chiung-Min Wang ◽  
Richard H. Yang

2004 ◽  
Vol 1014 (1) ◽  
pp. 220-221 ◽  
Author(s):  
RÜDIGER GÖKE ◽  
CORNELIA GREGEL ◽  
ALEXANDRA GÖKE ◽  
RUDOLF ARNOLD ◽  
HARALD SCHMIDT ◽  
...  

Oncogene ◽  
2002 ◽  
Vol 21 (30) ◽  
pp. 4613-4625 ◽  
Author(s):  
Karuppiah Muthumani ◽  
Donghui Zhang ◽  
Daniel S Hwang ◽  
Sagar Kudchodkar ◽  
Nathanael S Dayes ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ece Esin

In the last decade, we have gained a deeper understanding of innate immune system. The mechanism of the continuous guarding of progressive mutations happening in a single cell was discovered and the production and the recognition of tumor associated antigens by the T-cells and elimination of numerous tumors by immune-editing were further understood. The new discoveries on immune mechanisms and its relation with carcinogenesis have led to development of a new class of drugs called immunotherapeutics. T lymphocyte-associated antigen 4, programmed cell death protein 1, and programmed cell death protein ligand 1 are the classes drugs based on immunologic manipulation and are collectively known as the “checkpoint inhibitors.” Checkpoint inhibitors have shown remarkable antitumor efficacy in a broad spectrum of malignancies; however, the strongest and most durable immune responses do not last long and the more durable responses only occur in a small subset of patients. One of the solutions which have been put forth to overcome these challenges is combination strategies. Among the dual use of methods, a backbone with either PD-1 or PD-L1 antagonist drugs alongside with certain cytotoxic chemotherapies, radiation, targeted drugs, and novel checkpoint stimulators is the most promising approach and will be on stage in forthcoming years.


Sign in / Sign up

Export Citation Format

Share Document