scholarly journals Yap regulates mitochondrial structural remodeling during myoblast differentiation

2018 ◽  
Vol 315 (4) ◽  
pp. C474-C484 ◽  
Author(s):  
Shiyuan Huang ◽  
Xiaona Wang ◽  
Xinmei Wu ◽  
Jiale Yu ◽  
JinJing Li ◽  
...  

Yes-associated protein (Yap) is a core transcriptional coactivator in the downstream Hippo pathway that regulates cell proliferation and tissue growth. However, its role in the regulation of myoblast differentiation remains unclear. Regulation of mitochondrial networks by dynamin-related protein 1 (Drp1) and mitofusion 2 (Mfn2) is crucial for the activation of myoblast differentiation. In the present study, we investigated the interplay between the Hippo/Yap pathway and protein contents of Mfn2 and Drp1 during myoblast differentiation. The Hippo/Yap pathway was inactivated at the early stage of myoblast differentiation due to the decreased ratio of phosphorylated mammalian sterile 20 kinases 1/2 (p-Mst1/2) to Mst1/2, phosphorylated large tumor suppressor 1 (p-Lats1) to Lats1, and phosphorylated Yap (serine 112, p-Yap S112) to Yap, which resulted in the translocation of Yap from cytoplasm to nucleus, increased protein content of Drp1, and mitochondrial fission events. Downregulation of Yap inhibited myoblast differentiation and decreased the content of Drp1, which resulted in elongated mitochondria, fused mitochondrial networks, and collapsed mitochondrial membrane potential. Together, our data indicate that inactivation of the Hippo/Yap pathway could induce mitochondrial fission by promoting Drp1 content at the early stage of myoblast differentiation.

2020 ◽  
Vol 319 (6) ◽  
pp. C1020-C1028
Author(s):  
Shiyuan Huang ◽  
Xiaona Wang ◽  
Jiale Yu ◽  
Yu Tian ◽  
Chenkai Yang ◽  
...  

Myoblast differentiation is a crucial process for myogenesis. Mitochondria function as an energy-providing machine that is critical to this process, and mitochondrial dysfunction can prevent myoblasts from fusing into myotubes. However, the molecular mechanisms underlying the dynamic regulation of mitochondrial networks remain poorly understood. In the present study, we found that the PTEN induced kinase 1 (PINK1)/Parkin (an E3 ubiquitin-protein ligase) pathway is activated at the early stage of myoblast differentiation. Moreover, downregulation of mitofusin 2 (Mfn2) and increased dynamin-related protein 1 (Drp1) resulted in loosely formed mitochondria during this period. Furthermore, selective knockdown of the mitochondrial matrix protein Lon peptidase-1 (LonP1) at the early stage of myoblast differentiation induced mitochondrial depolarization and suppressed the PINK1/Parkin pathway and reduced Mfn2 and Drp1 levels, which blocked mitochondrial remodeling and myoblast differentiation. Overall, these data demonstrate that LonP1 promotes myoblast differentiation by regulating PINK1/Parkin-mediated mitochondrial remodeling.


2016 ◽  
Vol 213 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kenneth R. Pryde ◽  
Heather L. Smith ◽  
Kai-Yin Chau ◽  
Anthony H.V. Schapira

Mitochondrial fission is essential for the degradation of damaged mitochondria. It is currently unknown how the dynamin-related protein 1 (DRP1)–associated fission machinery is selectively targeted to segregate damaged mitochondria. We show that PTEN-induced putative kinase (PINK1) serves as a pro-fission signal, independently of Parkin. Normally, the scaffold protein AKAP1 recruits protein kinase A (PKA) to the outer mitochondrial membrane to phospho-inhibit DRP1. We reveal that after damage, PINK1 triggers PKA displacement from A-kinase anchoring protein 1. By ejecting PKA, PINK1 ensures the requisite fission of damaged mitochondria for organelle degradation. We propose that PINK1 functions as a master mitophagy regulator by activating Parkin and DRP1 in response to damage. We confirm that PINK1 mutations causing Parkinson disease interfere with the orchestration of selective fission and mitophagy by PINK1.


2010 ◽  
Vol 21 (14) ◽  
pp. 2443-2452 ◽  
Author(s):  
Miriam Hammermeister ◽  
Kerstin Schödel ◽  
Benedikt Westermann

The division of mitochondrial membranes is a complex process mediated by the dynamin-related protein Dnm1 in yeast, acting in concert with several cofactors. We have identified Mdm36 as a mitochondria-associated protein required for efficient mitochondrial division. Δmdm36 mutants contain highly interconnected mitochondrial networks that strikingly resemble known fission mutants. Furthermore, mitochondrial fission induced by depolymerization of the actin cytoskeleton is blocked in Δmdm36 mutants, and the number of Dnm1 clusters on mitochondrial tips is reduced. Double mutant analyses indicate that Mdm36 acts antagonistically to fusion-promoting components, such as Fzo1 and Mdm30. The cell cortex-associated protein Num1 was shown previously to interact with Dnm1 and promote mitochondrial fission. We observed that mitochondria are highly motile and that their localization is not restricted to the cell periphery in Δmdm36 and Δnum1 mutants. Intriguingly, colocalization of Num1 and Dnm1 is abolished in the absence of Mdm36. These data suggest that Mdm36 is required for mitochondrial division by facilitating the formation of protein complexes containing Dnm1 and Num1 at the cell cortex. We propose a model that Mdm36-dependent formation of cell cortex anchors is required for the generation of tension on mitochondrial membranes to promote mitochondrial fission by Dnm1.


Author(s):  
Yong Suk Cho ◽  
Jin Jiang

Initially identified in Drosophila, the Hippo signaling pathway has emerged as an evolutionarily conserved tumor suppressor pathway that controls tissue growth and organ size by simultaneously inhibiting cell proliferation and promoting cell death. Deregulation of Hippo pathway activity has been implicated in a wide range of human cancers. The core Hippo pathway consists of a kinase cascade: an upstream kinase Hippo (Hpo)/MST1/2 phosphorylates and activates a downstream kinase Warts (Wts)/Lats1/2, leading to phosphorylation and inactivation of a transcriptional coactivator Yki/YAP/Taz. Many upstream signals, including cell adhesion, polarity, mechanical stress, and soluble factors, regulate Hippo signaling through the kinase cascade, leading to change in the cytoplasmic/nuclear localization of Yki/YAP/Taz. However, recent studies have uncovered other mechanisms that regulate Yki/YAP/Taz subcellular localization, stability, and activity independent of the Hpo kinase cascade. These mechanisms provide additional layers of pathway regulation, nodes for pathway crosstalk, and opportunities for pathway intervention in cancer treatment and regenerative medicine.


2018 ◽  
Vol 315 (1) ◽  
pp. C80-C90 ◽  
Author(s):  
Mason T. Breitzig ◽  
Matthew D. Alleyn ◽  
Richard F. Lockey ◽  
Narasaiah Kolliputi

The constant physiological flux of mitochondrial fission and fusion is inextricably tied to the maintenance of cellular bioenergetics and the fluidity of mitochondrial networks. Yet, the intricacies of this dynamic duo remain unclear in diseases that encompass mitochondrial dysregulation. Particularly, the role of the GTPase fission protein dynamin-related protein 1 (Drp1) is of profound interest. Studies have identified that Drp1 participates in complex signaling pathways, suggesting that the function of mitochondria in pathophysiology may extend far beyond energetics alone. Research indicates that, in stressed conditions, Drp1 translocation to the mitochondria leads to elevated fragmentation and mitophagy; however, despite this, there is limited knowledge about the mechanistic regulation of Drp1 in disease conditions. This review highlights literature about fission, fusion, and, more importantly, discusses Drp1 in cardiac, neural, carcinogenic, renal, and pulmonary diseases. The therapeutic desirability for further research into its contribution to diseases that involve mitochondrial dysregulation is also discussed.


2020 ◽  
Vol 295 (10) ◽  
pp. 3017-3028 ◽  
Author(s):  
Kazuki Irie ◽  
Tomoaki Nagai ◽  
Kensaku Mizuno

The Hippo signaling pathway suppresses cell proliferation and tumorigenesis. In the canonical Hippo pathway, large tumor suppressor kinases 1/2 (LATS1/2) phosphorylate the transcriptional coactivator yes-associated protein (YAP) and thereby suppress its nuclear localization and co-transcriptional activity. Nuclear Dbf2-related kinases 1/2 (NDR1/2), which are closely related to LATS1/2, also phosphorylate and inactivate YAP by suppressing its nuclear localization. Furry (FRY) is a cytoplasmic protein that associates with NDR1/2 and activates them, but its role in the nuclear/cytoplasmic localization of YAP remains unknown. Here, we constructed FRY-knockout cell lines to examine the role of FRY in YAP's cytoplasmic localization. FRY depletion markedly increased YAP nuclear localization and decreased NDR1/2 kinase activity and YAP phosphorylation levels, but did not affect LATS1/2 kinase activity. This indicated that FRY suppresses YAP's nuclear localization by promoting its phosphorylation via NDR1/2 activation. NDR1/2 depletion also promoted YAP nuclear localization, but depletion of both FRY and NDR1/2 increased the number of cells with YAP nuclear localization more strongly than did depletion of NDR1/2 alone, suggesting that FRY suppresses YAP nuclear localization by a mechanism in addition to NDR1/2 activation. Co-precipitation assays revealed that Fry uses its N-terminal 1–2400-amino-acid-long region to bind to YAP. Expression of full-length FRY or its 1–2400 N-terminal fragment restored YAP cytoplasmic localization in FRY-knockout cells. Taken together, these results suggest that FRY plays a crucial role in YAP cytoplasmic retention by promoting YAP phosphorylation via NDR1/2 kinase activation and by binding to YAP, leading to its cytoplasmic sequestration.


2014 ◽  
Vol 25 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Qinfang Shen ◽  
Koji Yamano ◽  
Brian P. Head ◽  
Sumihiro Kawajiri ◽  
Jesmine T. M. Cheung ◽  
...  

Mitochondrial fission is mediated by the dynamin-related protein Drp1 in metazoans. Drp1 is recruited from the cytosol to mitochondria by the mitochondrial outer membrane protein Mff. A second mitochondrial outer membrane protein, named Fis1, was previously proposed as recruitment factor, but Fis1−/− cells have mild or no mitochondrial fission defects. Here we show that Fis1 is nevertheless part of the mitochondrial fission complex in metazoan cells. During the fission cycle, Drp1 first binds to Mff on the surface of mitochondria, followed by entry into a complex that includes Fis1 and endoplasmic reticulum (ER) proteins at the ER–mitochondrial interface. Mutations in Fis1 do not normally affect fission, but they can disrupt downstream degradation events when specific mitochondrial toxins are used to induce fission. The disruptions caused by mutations in Fis1 lead to an accumulation of large LC3 aggregates. We conclude that Fis1 can act in sequence with Mff at the ER–mitochondrial interface to couple stress-induced mitochondrial fission with downstream degradation processes.


2016 ◽  
Vol 216 (1) ◽  
pp. 265-277 ◽  
Author(s):  
Hitoshi Matakatsu ◽  
Seth S. Blair ◽  
Richard G. Fehon

The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.


2001 ◽  
Vol 1 (4) ◽  
pp. 515-525 ◽  
Author(s):  
Stephan Frank ◽  
Brigitte Gaume ◽  
Elke S. Bergmann-Leitner ◽  
Wolfgang W. Leitner ◽  
Everett G. Robert ◽  
...  

2011 ◽  
Vol 193 (4) ◽  
pp. 633-642 ◽  
Author(s):  
Sandra Habbig ◽  
Malte P. Bartram ◽  
Roman U. Müller ◽  
Ricarda Schwarz ◽  
Nikolaos Andriopoulos ◽  
...  

The conserved Hippo signaling pathway regulates organ size in Drosophila melanogaster and mammals and has an essential role in tumor suppression and the control of cell proliferation. Recent studies identified activators of Hippo signaling, but antagonists of the pathway have remained largely elusive. In this paper, we show that NPHP4, a known cilia-associated protein that is mutated in the severe degenerative renal disease nephronophthisis, acts as a potent negative regulator of mammalian Hippo signaling. NPHP4 directly interacted with the kinase Lats1 and inhibited Lats1-mediated phosphorylation of the Yes-associated protein (YAP) and TAZ (transcriptional coactivator with PDZ-binding domain), leading to derepression of these protooncogenic transcriptional regulators. Moreover, NPHP4 induced release from 14-3-3 binding and nuclear translocation of YAP and TAZ, promoting TEA domain (TEAD)/TAZ/YAP-dependent transcriptional activity. Consistent with these data, knockdown of NPHP4 negatively affected cellular proliferation and TEAD/TAZ activity, essentially phenocopying loss of TAZ function. These data identify NPHP4 as a negative regulator of the Hippo pathway and suggest that NPHP4 regulates cell proliferation through its effects on Hippo signaling.


Sign in / Sign up

Export Citation Format

Share Document