scholarly journals Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl−/1HCO3− exchange

2011 ◽  
Vol 300 (2) ◽  
pp. C276-C286 ◽  
Author(s):  
Seth L. Alper ◽  
Andrew K. Stewart ◽  
David H. Vandorpe ◽  
Jeffrey S. Clark ◽  
R. Zachary Horack ◽  
...  

The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl−/1HCO3− exchange suggests a required revision of classical concepts of electroneutral Cl− transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl−/HCO3− activity on apical membrane potential ( Va) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl−/(OH−)HCO3− exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo 36Cl− fluxes and microfluorometry revealed that cecal Cl−/HCO3− exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline Va of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl− substitution. Subsequent studies indicated that Cl−-dependent Va depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl− for extracellular HCO3− is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl− removal or pharmacological blockade. Further, Dra-dependent 36Cl− efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl−/1HCO3− exchange; and 2) acute induction of Dra Cl−/HCO3− exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO3− secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.

Author(s):  
Saurabh Aggarwal ◽  
Ahmed Lazrak ◽  
Israr Ahmad ◽  
Zhihong Yu ◽  
Ayesha Bryant ◽  
...  

ABSTRACTWe previously reported that cell-free heme (CFH) is increased in the plasma of patients with acute and chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time the presence of CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) in the plasma of patients and mice exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. A single intramuscular injection of the heme-scavenging protein hemopexin (4 µg/kg body weight) in mice, one hour post halogen exposure, reversed RBC fragility and decreased CFH levels to those of air controls. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.


1993 ◽  
Vol 265 (2) ◽  
pp. L170-L177 ◽  
Author(s):  
M. Yamaya ◽  
T. Ohrui ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

Surface epithelium and gland cells from human trachea were cultured on porous-bottom inserts and loaded with fura 2 to permit measurement of the intracellular calcium concentration ([Ca2+]i). Short-circuit current (Isc), an index of transepithelial active ion transport, was measured on cells from the same cultures. Surface epithelial [Ca2+]i of 82 +/- 15 nM was increased transiently by isoproterenol, histamine, and bradykinin with maximal increases of 88 +/- 17, 480 +/- 149, and 978 +/- 214 nM (n = 15), respectively. Baseline [Ca2+]i in cultured gland cells of 68 +/- 11 nM was increased transiently by isoproterenol, histamine, methacholine, and bradykinin with maximal increases of 105 +/- 19, 233 +/- 47, 327 +/- 121, and 634 +/- 151 nM (n = 17-21), respectively. In both cell types, mediators that increased [Ca2+]i also increased Isc with a time course identical to the increase in [Ca2+]i. Pretreatment with the calcium chelator, 1,2-bis-(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid, acetoxymethyl ester (BAPTA-AM), had no effect on basal Isc or transepithelial resistance but markedly inhibited both the Isc and [Ca2+]i responses to agonists. Forskolin (10(-5) M), 3-isobutyl-1-methylxanthine (10(-3) M), dibutyryl adenosine 3',5'-cyclic monophosphate (10(-3) M), and 8-(4-chlorophenylthio)-cAMP (10(-3) M) had no or only trivial effects on Isc and [Ca2+]i. We suggest that mediators increase Isc across human airway epithelium by activating Ca-dependent basolateral K channels, resulting in hyperpolarization and an increased driving force for Cl exit through apical membrane Cl channels.


1988 ◽  
Vol 255 (1) ◽  
pp. G62-G71 ◽  
Author(s):  
R. A. Argenzio ◽  
C. K. Henrikson ◽  
J. A. Liacos

Acute injury of the porcine colonic epithelium was induced in vivo with the bile salt, deoxycholate. A concentration of 15 mM for 30 min completely destroyed the surface epithelium and induced a marked increase in mucosal permeability to mannitol. The crypt epithelium however was not significantly affected. Within 8 min of recovery, the colonic surface was reepithelialized with flattened, migrating cells, and within 40 min, mucosal permeability to mannitol was normalized. In vitro studies showed that in these early stages of recovery, NaCl transport, short-circuit current, and resistance were markedly impaired, whereas the theophylline-induced secretory response remained intact. Recovery of absorptive function paralleled the transition from flattened to columnar surface epithelium and was complete within 2 h. Results suggest that 1) active migratory events play an important role in rapid restitution of an epithelial barrier, 2) active absorption of ions is much slower to recover, and 3) active secretory events are intact and probably originate in the crypt epithelium.


2005 ◽  
Vol 289 (5) ◽  
pp. G870-G879 ◽  
Author(s):  
Marcel J. C. Bijvelds ◽  
Huub Jorna ◽  
Henkjan J. Verkade ◽  
Alice G. M. Bot ◽  
Franz Hofmann ◽  
...  

In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl−secretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+flux. TC-evoked Cl−secretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Cl−secretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Cl−exit. TC-induced Cl−secretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state.


1985 ◽  
Vol 248 (3) ◽  
pp. R346-R352
Author(s):  
P. L. Smith

Transepithelial flux studies and conventional intracellular microelectrode measurements were employed to examine the mechanisms of ion transport by the alkaline gland of the male skate, Raja erinacea. These studies reveal that the transepithelial potential is 6.9 +/- 0.6 mV, lumen reference, and that the transepithelial resistance is 140 omega . cm2. The short-circuit current across this epithelium is entirely accounted for by net secretion of Cl, whereas transepithelial active transport of Na does not appear to be present in this tissue. Cl secretion and/or short-circuit current are reduced by serosal furosemide and abolished when the bathing solution Na is replaced with choline or when ouabain is added to the serosal bathing solution. Intracellular microelectrode studies reveal that the apical membrane potential is -43 mV, cell interior negative to the mucosal bathing solution. The transepithelial resistance in these tissues was 103 +/- 12 omega . cm2 and the apparent fractional resistance, i.e., the ratio of the change in apical membrane potential to the change in transepithelial potential produced by passing current across the epithelium was 0.39 +/- 0.09. Ion substitution experiments demonstrated that the apical membrane is dominated by a large Cl conductance while the basolateral membrane contains a barium-sensitive potassium conductance. These results suggest that the mechanism of Cl secretion by the alkaline gland is similar to the mechanism described for a variety of Cl secretory epithelia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
R. M. Pelis ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
...  

AbstractTwo orthologues of the gene encoding the Na+-Cl− cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl− cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.


2009 ◽  
Vol 296 (5) ◽  
pp. L811-L824 ◽  
Author(s):  
N. S. Joo ◽  
J. J. Wine ◽  
A. W. Cuthbert

Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone Kd = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl−1 min−1 in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility.


1995 ◽  
Vol 268 (6) ◽  
pp. C1503-C1511 ◽  
Author(s):  
D. Merlin ◽  
X. Guo ◽  
C. L. Laboisse ◽  
U. Hopfer

The mechanism of regulated Cl- secretion was evaluated in the mucin-secreting cell line HT29-Cl.16E by transepithelial electrophysiology and fura 2 measurements of cytosolic Ca2+. Carbachol by itself was a weak secretagogue, but augmented adenosine 3',5'-cyclic monophosphate (cAMP)-mediated secretion more than twofold, consistent with activation of a rate-limiting K+ conductance. To characterize this conductance, monolayers were apically permeabilized with amphotericin B. At least two types of K+ conductances were identified. One type was activated by elevated cytosolic cAMP levels and inhibited by Ba2+ (inhibitor constant 0.3 mM) in the basolateral solution but was not affected by quinidine or elevated cytosolic Ca2+. The other type was activated by carbachol via cytosolic Ca2+ and was partially inhibited by quinidine (60% inhibition by 2.5 mM quinidine) but was not affected by Ba2+ up to 1 mM. Both conductances appear to be involved in active, transepithelial Cl- secretion in intact monolayers but under different conditions because 1) the cAMP-stimulated short-circuit current (Isc) can be partially inhibited by 1 mM Ba2+ (50%) but not quinidine, 2) the Ba2+ inhibition does not affect the carbachol-induced increase in Isc in cells with elevated cAMP levels, and 3) the carbachol-dependent Isc can be inhibited by quinidine. Therefore, the contribution of the cAMP-dependent K+ conductance appears important for maintaining the membrane potential and therewith Cl- secretion when cAMP is the only messenger for secretion signals, whereas the Ca(2+)-dependent K+ conductance is responsible for the carbachol-stimulated increase in Isc.


1976 ◽  
Vol 231 (2) ◽  
pp. 501-508 ◽  
Author(s):  
TL Mullen ◽  
M Kashgarian ◽  
D Biemesderfer ◽  
GH Giebisch ◽  
TU Biber

The urinary bladder of Amphiuma exhibits stable transport properties and an electrical potential difference in vitro. The lumen is significantly negative to the serosa and under short-circuited conditions flux rations for Na and Cl of 5.92 +/- 0.42 and 1.81 +/- 0.20, respectively, were observed. The close agreement between the short-circuit current and net Na flux suggests that most, if not all, of the current is carried by Na. Both ouabain and amiloride decreased the short-circuit current and the mucosal-to-serosal (M leads to S) flux of Na. Furosemide caused a transient increase in the M leads to S flux of Na and Cl but ADH was without effect. In bladders that had high transmural resistance, a net movement of K in the M leads to S direction under short-circuited conditions with flux ratios of up to 2 could be observed. The epithelium of the Amphiuma bladder consists of three cell types: granular cells, basal cells, and mitochondria-rich cells. No goblet cells are present. The mitochondria-rich cells comprise less than 5% of the population of the surface epithelium in Amphiuma in contrast to other amphibian bladders, where it accounts for up to 25% of the population.


2020 ◽  
Vol 11 ◽  
Author(s):  
Iris A. L. Silva ◽  
Aires Duarte ◽  
Fernando A. L. Marson ◽  
Raquel Centeio ◽  
Tereza Doušová ◽  
...  

Most cases of Cystic Fibrosis (CF) are diagnosed early in life. However, people with atypical CF forms pose diagnosis dilemmas, requiring laboratory support for diagnosis confirmation/exclusion. Ex vivo analysis of fresh rectal biopsies by Ussing chamber has been the best discriminant biomarker for CF diagnosis/prognosis so far. Here we aimed to evaluate different electrophysiological parameters from Ussing chamber analysis of rectal biopsies from people with CF (PwCF) to establish the one with highest correlations with clinical features as the best CF diagnosis/prognosis biomarker. We analyzed measurements of CFTR-mediated Cl– secretion in rectal biopsies from 143 individuals (∼592 biopsies), the largest cohort so far analyzed by this approach. New parameters were analyzed and compared with the previous biomarker, i.e., the IBMX (I)/Forskolin (F)/Carbachol (C)-stimulated short-circuit current (I’sc–I/F/C). Correlations with clinical features showed that the best parameter corresponded to voltage measurements of the I/F + (I/F/CCH) response (VI/F+I/F/C), with higher correlations vs. I’sc–I/F/C for: sweat chloride (59 vs. 52%), fecal elastase (69 vs. 55%) and lung function, measured by FEV1 (27 vs. 20%). Altogether data show that VI/F+I/F/C is the most sensitive, reproducible, and robust predictive biomarker for CF diagnosis/prognosis effectively discriminating classical, atypical CF and non-CF groups.


Sign in / Sign up

Export Citation Format

Share Document