Distribution of sodium transporters and aquaporin-1 in the human choroid plexus

2006 ◽  
Vol 291 (1) ◽  
pp. C59-C67 ◽  
Author(s):  
Jeppe Praetorius ◽  
Søren Nielsen

The choroid plexus epithelium secretes electrolytes and fluid in the brain ventricular lumen at high rates. Several channels and ion carriers have been identified as likely mediators of this transport in rodent choroid plexus. This study aimed to map several of these proteins to the human choroid plexus. Immunoperoxidase-histochemistry was employed to determine the cellular and subcellular localization of the proteins. The water channel, aquaporin (AQP) 1, was predominantly situated in the apical plasma membrane domain, although distinct basolateral and endothelial immunoreactivity was also observed. The Na+-K+-ATPase α1-subunit was exclusively localized apically in the human choroid plexus epithelial cells. Immunoreactivity for the Na+-K+-2Cl− cotransporter, NKCC1, was likewise confined to the apical plasma membrane domain of the epithelium. The Cl−/HCO3− exchanger, AE2, was localized basolaterally, as was the Na+-dependent Cl−/HCO3− exchanger, NCBE, and the electroneutral Na+-HCO3− cotransporter, NBCn1. No immunoreactivity was found toward the Na+-dependent acid/base transporters NHE1 or NBCe2. Hence, the human choroid plexus epithelium displays an almost identical distribution pattern of water channels and Na+ transporters as the rat and mouse choroid plexus. This general cross species pattern suggests central roles for these transporters in choroid plexus functions such as cerebrospinal fluid production.

2004 ◽  
Vol 286 (3) ◽  
pp. C601-C610 ◽  
Author(s):  
J. Praetorius ◽  
L. N. Nejsum ◽  
S. Nielsen

The choroid plexus epithelium of the brain ventricular system produces the majority of the cerebrospinal fluid and thereby defines the ionic composition of the interstitial fluid in the brain. The transepithelial movement of Na+ and water in the choroid plexus depend on a yet-unidentified basolateral stilbene-sensitive [Formula: see text]-[Formula: see text] uptake protein. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed the expression in the choroid plexus of SLC4A10 mRNA, which encodes a stilbene-sensitive [Formula: see text]-[Formula: see text] transporter. Anti-COOH-terminal antibodies were developed to determine the specific expression and localization of this [Formula: see text]-[Formula: see text] transport protein. Immunoblotting demonstrated antibody binding to a 180-kDa protein band from mouse and rat brain preparations enriched with choroid plexus. The immunoreactive band migrated as a 140-kDa protein after N-deglycosylation, consistent with the predicted molecular size of the SLC4A10 gene product. Bright-field immunohistochemistry and immunoelectron microscopy demonstrated strong labeling confined to the basolateral plasma membrane domain of the choroid plexus epithelium. Furthermore, the stilbene-insensitive [Formula: see text]-[Formula: see text] cotransporter, NBCn1, was also localized to the basolateral plasma membrane domain of the choroid plexus epithelium. Hence, we propose that the SLC4A10 gene product and NBCn1 both function as basolateral [Formula: see text] entry pathways and that the SLC4A10 gene product may be responsible for the stilbene-sensitive [Formula: see text]-[Formula: see text] uptake that is essential for cerebrospinal fluid production.


1998 ◽  
Vol 46 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Lukas Landmann ◽  
Sabine Angermüller ◽  
Christoph Rahner ◽  
Bruno Stieger

Hepatocellular Na+,K+-ATPase is an important driving force for bile secretion and has been localized to the basolateral plasma membrane domain. Cholestasis or impaired bile flow is known to modulate the expression, domain specificity, and activity of various transport systems involved in bile secretion. This study examined Na+,K+-ATPase after ethinylestradiol (EE) treatment and after bile duct ligation (BDL), two rat models of cholestasis. It applied quantitative immunoblotting, biochemical and cytochemical determination of enzyme activity, and immunocytochemistry to the same livers. The data showed a good correlation among the results of the different methods. Neither EE nor BDL induced alterations in the subcellular distribution of Na+,K+-ATPase, which was found in the basolateral but not in the canalicular (apical) plasma membrane domain. Protein expression and enzyme activity showed a small (~10%) decrease after EE treatment and a similar increase after BDL. These modest changes could not be detected by immunofluorescence, immuno EM, or cytochemistry. The data, therefore, demonstrate that Na+,K+-ATPase is only slightly affected by EE and BDL. They suggest that other components of the bile secretory apparatus that take effect downstream of the primary basolateral driving force may play a more prominent role in the pathogenesis of cholestasis.


1993 ◽  
Vol 123 (1) ◽  
pp. 149-164 ◽  
Author(s):  
J A Marrs ◽  
E W Napolitano ◽  
C Murphy-Erdosh ◽  
R W Mays ◽  
L F Reichardt ◽  
...  

In simple epithelia, the distribution of ion transporting proteins between the apical or basal-lateral domains of the plasma membrane is important for determining directions of vectorial ion transport across the epithelium. In the choroid plexus, Na+,K(+)-ATPase is localized to the apical plasma membrane domain where it regulates sodium secretion and production of cerebrospinal fluid; in contrast, Na+,K(+)-ATPase is localized to the basal-lateral membrane of cells in the kidney nephron where it regulates ion and solute reabsorption. The mechanisms involved in restricting Na+,K(+)-ATPase distribution to different membrane domains in these simple epithelia are poorly understood. Previous studies have indicated a role for E-cadherin mediated cell-cell adhesion and membrane-cytoskeleton (ankyrin and fodrin) assembly in regulating Na+,K(+)-ATPase distribution in absorptive kidney epithelial cells. Confocal immunofluorescence microscopy reveals that in chicken and rat choroid plexus epithelium, fodrin, and ankyrin colocalize with Na+,K(+)-ATPase at the apical plasma membrane, but fodrin, ankyrin, and adducin also localize at the lateral plasma membrane where Na+,K(+)-ATPase is absent. Biochemical analysis shows that fodrin, ankyrin, and Na+,K(+)-ATPase are relatively resistant to extraction from cells in buffers containing Triton X-100. The fractions of Na+,K(+)-ATPase, fodrin, and ankyrin that are extracted from cells cosediment in sucrose gradients at approximately 10.5 S. Further separation of the 10.5 S peak of proteins by electrophoresis in nondenaturing polyacrylamide gels revealed that fodrin, ankyrin, and Na+,K(+)-ATPase comigrate, indicating that these proteins are in a high molecular weight complex similar to that found previously in kidney epithelial cells. In contrast, the anion exchanger (AE2), a marker protein of the basal-lateral plasma membrane in the choroid plexus, did not cosediment in sucrose gradients or comigrate in nondenaturing polyacrylamide gels with the complex of Na+,K(+)-ATPase, ankyrin, and fodrin. Ca(++)-dependent cell adhesion molecules (cadherins) were detected at lateral membranes of the choroid plexus epithelium and colocalized with a distinct fraction of ankyrin, fodrin, and adducin. Cadherins did not colocalize with Na+,K(+)-ATPase and were absent from the apical membrane. The fraction of cadherins that was extracted with buffers containing Triton X-100 cosedimented with ankyrin and fodrin in sucrose gradients and comigrated in nondenaturing gels with ankyrin and fodrin in a high molecular weight complex. Since a previous study showed that E-cadherin is an instructive inducer of Na+,K(+)-ATPase distribution, we examined protein distributions in fibroblasts transfected with B-cadherin, a prominent cadherin expressed in the choroid plexus epithelium.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 4 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Joanna Szumska ◽  
Maria Qatato ◽  
Maren Rehders ◽  
Dagmar F�hrer ◽  
Heike Biebermann ◽  
...  

1997 ◽  
Vol 137 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Sven C.D. van IJzendoorn ◽  
Mirjam M.P. Zegers ◽  
Jan Willem Kok ◽  
Dick Hoekstra

HepG2 cells are highly differentiated hepatoma cells that have retained an apical, bile canalicular (BC) plasma membrane polarity. We investigated the dynamics of two BC-associated sphingolipids, glucosylceramide (GlcCer) and sphingomyelin (SM). For this, the cells were labeled with fluorescent acyl chainlabeled 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)- amino]hexanoic acid (C6-NBD) derivatives of either GlcCer (C6-NBD-GlcCer) or SM (C6-NBD-SM). The pool of the fluorescent lipid analogues present in the basolateral plasma membrane domain was subsequently depleted and the apically located C6-NBD-lipid was chased at 37°C. By using fluorescence microscopical analysis and a new assay that allows an accurate estimation of the fluorescent lipid pool in the apical membrane, qualitative and quantitative insight was obtained concerning kinetics, extent and (intra)cellular sites of the redistribution of apically located C6-NBD-GlcCer and C6-NBD-SM. It is demonstrated that both lipids display a preferential localization, C6-NBD-GlcCer in the apical and C6-NBD-SM in the basolateral area. Such a preference is expressed during transcytosis of both sphingolipids from the apical to the basolateral plasma membrane domain, a novel lipid trafficking route in HepG2 cells. Whereas the vast majority of the apically derived C6-NBD-SM was rapidly transcytosed to the basolateral surface, most of the apically internalized C6-NBD-GlcCer was efficiently redirected to the BC. The redirection of C6-NBD-GlcCer did not involve trafficking via the Golgi apparatus. Evidence is provided which suggests the involvement of vesicular compartments, located subjacent to the apical plasma membrane. Interestingly, the observed difference in preferential localization of C6-NBD-GlcCer and C6NBD-SM was perturbed by treatment of the cells with dibutyryl cAMP, a stable cAMP analogue. While the preferential apical localization of C6-NBD-GlcCer was amplified, dibutyryl cAMP-treatment caused apically retrieved C6-NBD-SM to be processed via a similar pathway as that of C6-NBD-GlcCer. The data unambiguously demonstrate that segregation of GlcCer and SM occurs in the reverse transcytotic route, i.e., during apical to basolateral transport, which results in the preferential localization of GlcCer and SM in the apical and basolateral region of the cells, respectively. A role for non-Golgi–related, sub-apical vesicular compartments in the sorting of GlcCer and SM is proposed.


Sign in / Sign up

Export Citation Format

Share Document