Activation of KCNQ (KV7) K+ channels in enteric neurons inhibits epithelial Cl- secretion in mouse distal colon

Author(s):  
Andrew J. Nickerson ◽  
Trey S. Rottgen ◽  
Vazhaikkurichi M. Rajendran

KV7 (KCNQ) K+ channels are expressed in many neuronal populations, and play an important role in regulating membrane potential by generating a hyper-polarizing K+ current and decreasing cell excitability. However, the role of KV7 channels in the neural regulation of intestinal epithelial Cl- secretion is not known. Cl- secretion in mouse distal colon was measured as a function of short circuit current (ISC), while pharmacological approaches were used to test the hypothesis that activation of KV7 channels in enteric neurons would inhibit epithelial Cl- secretion. Flupirtine, a non-selective KV7 activator, inhibited basal Cl- secretion in mouse distal colon and abolished or attenuated the effects of drugs that target various components of enteric neurotransmission, including tetrodotoxin (NaV channel blocker), Veratridine (NaV channel activator), Nicotine (nicotinic acetylcholine receptor agonist) and Hexamethonium (nicotinic antagonist). In contrast, flupritine did not block the response to epithelium-targeted agents VIP (endogenous VPAC receptor ligand) or carbachol (non-selective cholinergic agonist). Flupirtine inhibited Cl- secretion in both full-thickness and seromuscular-stripped distal colon (containing the submucosal, but not myenteric plexus), but generated no response in epithelial T84 cell monolayers. KV7.2 and KV7.3 channel proteins were detected by immunofluorescence in whole-mount preparations of the submucosa from mouse distal colon. ICA 110381 (KV7.2/7.3 specific activator) inhibited Cl- secretion comparably to flupirtine. We conclude that KV7 channel activators inhibit neurally-driven Cl- secretion in the colonic epithelium, and may therefore have therapeutic benefit in treating pathologies associated with hyper-excitable enteric nervous system, such as irritable bowel syndrome with diarrhea (IBS-D).

1990 ◽  
Vol 258 (3) ◽  
pp. G432-G439 ◽  
Author(s):  
Y. Z. Wang ◽  
H. J. Cooke ◽  
H. C. Su ◽  
R. Fertel

We tested the hypothesis that the role of histamine in the control of intestinal secretion is mediated by prostaglandins (PGs). The effects of histamine on ion transport were examined in muscle-stripped sheets of mucosa/submucosa set up in flux chambers. Histamine evoked a transient concentration-dependent increase in short-circuit current (Isc) that was reduced by the Cl- transport inhibitor bumetanide. Histamine also caused the release of PGE2. The Isc response to histamine was reduced by indomethacin and piroxicam, which block PG formation, but not by nordihydroguaiaretic acid, which prevents production of lipoxygenase products. 2-Methylhistamine, but not dimaprit, evoked a concentration-dependent increase in Isc. The Isc response to histamine was reduced by the H1-blocker pyrilamine, but not by the H2-antagonist cimetidine. In addition to its direct effect, histamine augmented the responses of endogenously released neurotransmitters with and without indomethacin and hexamethonium. Tetrodotoxin (TTX) reduced the Isc response to 10(-3) M histamine. In the presence of TTX, exogenous histamine amplified the responses to PGs, vasoactive intestinal polypeptide, 2-chloroadenosine, bethanechol, and carbachol. These results suggest that histamine acts at H1-receptors on cells within the gut to mediate intestinal Cl- secretion in part by releasing PGs and by augmenting the actions of endogenously released neurotransmitters. Our results indicate that histamine has a role in the regulation of colonic transport function.


1997 ◽  
Vol 272 (2) ◽  
pp. G238-G245 ◽  
Author(s):  
H. J. Cooke ◽  
M. Sidhu ◽  
P. Fox ◽  
Y. Z. Wang ◽  
E. M. Zimmermann

The role of substance P in neural reflex pathways activated by stroking was investigated in muscle-stripped segments of distal colon from guinea pigs. Stroking the mucosal surface with a brush at 1 stroke/s evoked an increase in short-circuit current (Isc) indicative of chloride secretion. The response to mucosal stroking was maximally reduced by 69-75% by the antagonist GR-82334. The agonist [Sar9,Met(O2)11] substance P caused a bumetanide-sensitive increase in Isc when added to the mucosal or serosal bath. Ablation of extrinsic afferents with acute or chronic administration of capsaicin did not alter the mucosal stroking response. Reverse transcription-polymerase chain reaction and in situ hybridization revealed the presence of neurokinin1 (NK1) receptor messenger RNA in isolated colonocytes or crypt glands. Ligand binding of 125I-Bolton-Hunter-labeled substance P was inhibited by GR-82334. The 50% inhibitory concentration was 0.84 nM. The results demonstrate a role for substance P released from capsaicin-insensitive submucosal neurons and in mucosal stroking reflexes. The presence of NK1 receptors on isolated colonocytes suggests that appropriate elements are present for axon reflex activation of intestinal epithelial cells.


1989 ◽  
Vol 256 (6) ◽  
pp. C1224-C1230 ◽  
Author(s):  
K. Dharmsathaphorn ◽  
J. Cohn ◽  
G. Beuerlein

Free cytosolic Ca2+ [( Ca2+]i) has been implicated as a second messenger mediating the ion transport effects of carbachol, histamine, taurodeoxycholate, ionomycin, and 4-bromo-A23187 (4-BrA23187) in T84-cells. In this study, we correlated short-circuit current (Isc, reflective of Cl- secretion) and [Ca2+]i responses in T84-cell monolayers stimulated by these agents to evaluate the role of [Ca2+]i in Cl- secretory responses. Time-course studies showed that the duration of [Ca2+]i and Isc responses did not correlate with one another. Isc responses were more prolonged than [Ca2+]i responses with carbachol and histamine (both derived [Ca2+]i partly from intracellular sources), less prolonged than [Ca2+]i with taurodeoxycholate, and continued to increase after [Ca2+]i stabilized with ionomycin and 4-BrA23187. Isc and [Ca2+]i responses to histamine and carbachol were additive. A comparison of the magnitude of [Ca2+]i and Isc responses in cells stimulated by different agonists showed that the change in [Ca2+]i accompanying equivalent Isc responses varied greatly, suggesting that secretagogues vary in their dependency on [Ca2+]i. These findings suggest the existence of multiple [Ca2+]i-mediated effector mechanisms or the existence of multiple mediators that augment or attenuate the action of [Ca2+]i.


1999 ◽  
Vol 276 (3) ◽  
pp. G781-G788 ◽  
Author(s):  
Gail Hecht ◽  
Athanasia Koutsouris

Enteric bacterial pathogens often increase intestinal Cl− secretion. Enteropathogenic Escherichia coli(EPEC) does not stimulate active ion secretion. In fact, EPEC infection decreases net ion transport in response to classic secretagogues. This has been presumed to reflect diminished Cl− secretion. The aim of this study was to investigate the influence of EPEC infection on specific intestinal epithelial ion transport processes. T84 cell monolayers infected with EPEC were used for these studies. EPEC infection significantly decreased short-circuit current ( I sc) in response to carbachol and forskolin, yet125I efflux studies revealed no difference in Cl− channel activity. There was also no alteration in basolateral K+ channel or Na+-K+-2Cl−cotransport activity. Furthermore, net36Cl−flux was not decreased by EPEC. No alterations in either K+ or Na+ transport could be demonstrated. Instead, removal of basolateral bicarbonate from uninfected monolayers yielded an I sc response approximating that observed with EPEC infection, whereas bicarbonate removal from EPEC-infected monolayers further diminished I sc. These studies suggest that the reduction in stimulated I sc is not secondary to diminished Cl−secretion. Alternatively, bicarbonate-dependent transport processes appear to be perturbed.


1992 ◽  
Vol 263 (6) ◽  
pp. G847-G852 ◽  
Author(s):  
N. H. Javed ◽  
Y. Z. Wang ◽  
H. J. Cooke

The role of cholinergic neurons in mediating chloride secretion in anaphylaxis was assessed in muscle-stripped segments of distal colon from guinea pigs immunized to bovine milk. beta-Lactoglobulin evoked a concentration-dependent increase in short-circuit current (Isc) in immune, but not nonimmune, tissues. The Isc response to beta-lactoglobulin was reduced by piroxicam, pyrilamine, and cimetidine. Tetrodotoxin and atropine reduced the Isc response to beta-lactoglobulin in immune animals, whereas mecamylamine and ICS 205-930 were ineffective. beta-Lactoglobulin evoked a concentration-dependent increase in acetylcholine (ACh) release in immune, but not nonimmune, animals. In immune tissues after challenge with beta-lactoglobulin, ACh release paralleled the change in Isc. Piroxicam, cimetidine plus pyrilamine, or a combination of piroxicam, cimetidine, and pyrilamine significantly reduced the release of ACh after beta-lactoglobulin challenge. Histamine, dimaprit, and prostaglandins E2 evoked an increase in ACh release. These results suggest that beta-lactoglobulin releases prostaglandins and histamine probably from mast cells. Secretory responses that occur when immune animals are challenged with beta-lactoglobulin result, in part, from activation of cholinergic neurons that utilize muscarinic synapses for transfer of signals to the epithelium.


2007 ◽  
Vol 293 (6) ◽  
pp. C1851-C1861 ◽  
Author(s):  
Jainuch Kanchanapoo ◽  
Mei Ao ◽  
Roli Prasad ◽  
Christopher Moore ◽  
Cynthia Kay ◽  
...  

The role of specific PKC isoforms in the regulation of epithelial Cl− secretion by Ca2+-dependent secretagogues remains controversial. In the developing rabbit distal colon, the bile acid taurodeoxycholate (TDC) acts via intracellular calcium to stimulate Cl− transport in adult, but not in young, animals, whereas the PKC activator phorbol dibutyrate (PDB) stimulates Cl− transport at all ages. We tested the hypothesis that specific PKC isoforms account for the age-specific effects of TDC. The effects of conventional (cPKC) and novel (nPKC) PKC-specific inhibitors on TDC- and PDB-stimulated Cl− transport in adult and weanling colonocytes were assessed by using 6-methoxy-quinolyl acetoethyl ester. In adult colonocytes, the cPKC inhibitor Gö-6976 inhibited PDB action but not TDC action, whereas the cPKC and nPKC inhibitor Gö-6850 blocked both TDC and PDB actions. Additionally, rottlerin and the PKC-δ-specific inhibitor peptide (δV1-1) inhibited TDC- and PDB-stimulated Cl− transport in adult colonocytes. Rottlerin also decreased TDC-stimulated short-circuit current in intact colonic epithelia. Only Gö-6976, but neither rottlerin nor δV1-1, inhibited PDB-stimulated transport in weanling colonocytes. Colonic lysates express PKC-α, -λ, and -ι protein equally at all ages, but they do not express PKC-γ or -θ at any age. Expression of PKC-β and PKC-ε protein was newborn>adult>weanling, whereas PKC-δ was expressed in adult but not in weanling or newborn colonocytes. TDC (1.6-fold) and PDB (2.0-fold) stimulated PKC-δ enzymatic activity in adult colonocytes but failed to do so in weanling colonocytes. PKC-δ mRNA expression showed age dependence. Thus PKC-δ appears critical for the action of TDC in the adult colon, and its low expression in young animals may account for their inability to secrete in response to bile acids.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


2018 ◽  
Vol 315 (1) ◽  
pp. G1-G11 ◽  
Author(s):  
Camille Pochard ◽  
Sabrina Coquenlorge ◽  
Marie Freyssinet ◽  
Philippe Naveilhan ◽  
Arnaud Bourreille ◽  
...  

Gone are the days when enteric glial cells (EGC) were considered merely satellites of enteric neurons. Like their brain counterpart astrocytes, EGC express an impressive number of receptors for neurotransmitters and intercellular messengers, thereby contributing to neuroprotection and to the regulation of neuronal activity. EGC also produce different soluble factors that regulate neighboring cells, among which are intestinal epithelial cells. A better understanding of EGC response to an inflammatory environment, often referred to as enteric glial reactivity, could help define the physiological role of EGC and the importance of this reactivity in maintaining gut functions. In chronic inflammatory disorders of the gut such as Crohn’s disease (CD) and ulcerative colitis, EGC exhibit abnormal phenotypes, and their neighboring cells are dysfunctional; however, it remains unclear whether EGC are only passive bystanders or active players in the pathophysiology of both disorders. The aim of the present study is to review the physiological roles and properties of EGC, their response to inflammation, and their role in the regulation of the intestinal epithelial barrier and to discuss the emerging concept of CD as an enteric gliopathy.


2017 ◽  
Vol 312 (2) ◽  
pp. G103-G111 ◽  
Author(s):  
Sabrina Jeppsson ◽  
Shanthi Srinivasan ◽  
Bindu Chandrasekharan

We have demonstrated that neuropeptide Y (NPY), abundantly produced by enteric neurons, is an important regulator of intestinal inflammation. However, the role of NPY in the progression of chronic inflammation to tumorigenesis is unknown. We investigated whether NPY could modulate epithelial cell proliferation and apoptosis, and thus regulate tumorigenesis. Repeated cycles of dextran sodium sulfate (DSS) were used to model inflammation-induced tumorigenesis in wild-type (WT) and NPY knockout ( NPY−/−) mice. Intestinal epithelial cell lines (T84) were used to assess the effects of NPY (0.1 µM) on epithelial proliferation and apoptosis in vitro. DSS-WT mice exhibited enhanced intestinal inflammation, polyp size, and polyp number (7.5 ± 0.8) compared with DSS- NPY−/− mice (4 ± 0.5, P < 0.01). Accordingly, DSS-WT mice also showed increased colonic epithelial proliferation (PCNA, Ki67) and reduced apoptosis (TUNEL) compared with DSS- NPY−/− mice. The apoptosis regulating microRNA, miR-375, was significantly downregulated in the colon of DSS-WT (2-fold, P < 0.01) compared with DSS- NPY−/−-mice. In vitro studies indicated that NPY promotes cell proliferation (increase in PCNA and β-catenin, P < 0.05) via phosphatidyl-inositol-3-kinase (PI3-K)-β-catenin signaling, suppressed miR-375 expression, and reduced apoptosis (increase in phospho-Bad). NPY-treated cells also displayed increased c-Myc and cyclin D1, and reduction in p21 ( P < 0.05). Addition of miR-375 inhibitor to cells already treated with NPY did not further enhance the effects induced by NPY alone. Our findings demonstrate a novel regulation of inflammation-induced tumorigenesis by NPY-epithelial cross talk as mediated by activation of PI3-K signaling and downregulation of miR-375. NEW & NOTEWORTHY Our work exemplifies a novel role of neuropeptide Y (NPY) in regulating inflammation-induced tumorigenesis via two modalities: first by enhanced proliferation (PI3-K/pAkt), and second by downregulation of microRNA-375 (miR-375)-dependent apoptosis in intestinal epithelial cells. Our data establish the existence of a microRNA-mediated cross talk between enteric neurons producing NPY and intestinal epithelial cells, and the potential of neuropeptide-regulated miRNAs as potential therapeutic molecules for the management of inflammation-associated tumors in the gut.


2004 ◽  
Vol 286 (5) ◽  
pp. G814-G821 ◽  
Author(s):  
Bi-Guang Tuo ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett ◽  
Jon I. Isenberg

PKC has been shown to regulate epithelial Cl- secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current ( Isc). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or Isc ( P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and Isc in a concentration-dependent manner (from 10-8 to 10-5M) ( P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCα, -γ, -ϵ, -θ, -μ, and -ι/λ were expressed in murine duodenal mucosa. Ro 31–8220 (an inhibitor active against PKCϵ, -α, -β, and -γ), but not Gö 6983 (an inhibitor active against PKCα, -γ, -β, and -δ), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCϵ, an effect that was prevented by Ro 31–8220 but not Gö 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCϵ isoform.


Sign in / Sign up

Export Citation Format

Share Document