Growth factor regulation of uncoupling protein-1 mRNA expression in brown adipocytes

2002 ◽  
Vol 282 (1) ◽  
pp. C105-C112 ◽  
Author(s):  
Bibian García ◽  
Maria-Jesús Obregón

To study the effect of the mitogens epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF and bFGF), and vasopressin on brown adipocyte differentiation, we analyzed the expression of uncoupling protein-1 (UCP-1) mRNA. Quiescent brown preadipocytes express high levels of UCP-1 mRNA in response to triiodothyronine (T3) and norepinephrine (NE). The addition of serum or the mitogenic condition aFGF + vasopressin + NE or EGF + vasopressin + NE decreases UCP-1 mRNA. A second addition of mitogens further decreases UCP-1 mRNA. Treatment with aFGF or bFGF alone increases UCP-1 mRNA, whereas the addition of EGF or vasopressin dramatically reduces UCP-1 mRNA levels. The continuous presence of T3 increases UCP-1 mRNA levels in cells treated with EGF, aFGF, or bFGF. The effect of T3 on the stimulation of DNA synthesis also was tested. T3 inhibits the mitogenic activity of aFGF and bFGF. In conclusion, mitogens like aFGF or bFGF allow brown adipocyte differentiation, whereas EGF and vasopressin inhibit the differentiation process. T3 behaves as an important hormone that regulates both brown adipocyte proliferation and differentiation.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Won Kon Kim ◽  
Baek-Soo Han

Abstract Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. These results suggested that the IDH1–α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


PPAR Research ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
H. Y. Chen ◽  
Q. Liu ◽  
A. M. Salter ◽  
M. A. Lomax

Expression of the brown adipocyte-specific gene, uncoupling protein 1 (UCP1), is increased by both PPARγstimulation and cAMP activation through their ability to stimulate the expression of the PPAR coactivator PGC1α. In HIB1B brown preadipocytes, combination of the PPARγagonist, rosiglitazone, and the cAMP stimulator forskolin synergistically increased UCP1 mRNA expression, but PGC1αexpression was only increased additively by the two drugs. The PPARγantagonist, GW9662, and the PKA inhibitor, H89, both inhibited UCP1 expression stimulated by rosiglitazone and forskolin but PGC1αexpression was not altered to the same extent. Reporter studies demonstrated that combined rosiglitazone and forskolin synergistically activated transcription from a full length 3.1 kbp UCP1 luciferase promoter construct, but the response was only additive and much reduced when a minimal 260 bp proximal UCP1 promoter was examined. Rosiglitazone and forskolin in combination were able to synergistically stimulate promoters comprising of tandem repeats of either PPREs or CREs. We conclude that rosiglitazone and forskolin act together to synergistically activate the UCP1 promoter directly rather than by increasing PGC1αexpression and by a mechanism involving cross-talk between the signalling systems regulating the CRE and PPRE on the promoters.


1991 ◽  
Vol 261 (6) ◽  
pp. C1173-C1183 ◽  
Author(s):  
H. S. Cross ◽  
A. Quaroni

To investigate the role and mechanism of action of epidermal growth factor (EGF) in the intestinal epithelium, we have studied its influence on proliferation and differentiation of Caco-2 cells, a human colon adenocarcinoma cell line exhibiting several characteristics of adult small intestinal enterocytes. A clone of Caco-2 cells synthesizing minimal amounts of transforming growth factor-alpha (TGF-alpha)/epidermal growth factor (EGF)-like activity was used in these studies. Cells grown in the presence of 20-200 ng EGF/ml exhibited increased DNA synthesis and proliferation; formation of morphologically poorly differentiated multilayers was observed at 200 ng EGF/ml. At all concentrations tested EGF produced a significant and marked reduction in sucrase activity, whereas other brush-border enzymes (aminopeptidase N, alkaline phosphatase, dipeptidylpeptidase IV) were only marginally affected. EGF influenced sucrase expression at two different levels. At 20 ng/ml, it affected primarily sucrase-isomaltase processing in the endoplasmic reticulum and/or increased its degradation. At 200 ng EGF/ml, a significant and marked reduction in sucrase-isomaltase mRNA levels and biosynthesis was observed. These results demonstrated that EGF has important and selective effects on Caco-2 cell proliferation and differentiation and may affect different cellular activities depending on its concentration.


2002 ◽  
Vol 362 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Agatha SCHLÜTER ◽  
Maria José BARBERÁ ◽  
Roser IGLESIAS ◽  
Marta GIRALT ◽  
Francesc VILLARROYA

Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR) α, PPARγ or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5′ enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis.


2016 ◽  
Vol 36 (2) ◽  
Author(s):  
Lars Rebiger ◽  
Sigurd Lenzen ◽  
Ilir Mehmeti

Pro-inflammatory cytokine-induced brown adipocyte dysfunction and consecutive cell death is mediated by suppression of the mitochondrial uncoupling protein 1 and concomitant generation of reactive oxygen species.


2002 ◽  
Vol 362 (1) ◽  
pp. 61 ◽  
Author(s):  
Agatha SCHLÜTER ◽  
Maria José BARBERÁ ◽  
Roser IGLESIAS ◽  
Marta GIRALT ◽  
Francesc VILLARROYA

2021 ◽  
Vol 12 ◽  
Author(s):  
María Bové ◽  
Fermi Monto ◽  
Paloma Guillem-Llobat ◽  
M Dolores Ivorra ◽  
M Antonia Noguera ◽  
...  

Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human retroperitoneal AT and decreases with age. NT3 was also present in rat isolated adipocytes and retroperitoneal, interscapular, perivascular, and perirenal AT. Histological analysis evidences that NT3 was mainly present in vessels irrigating AT close associated to sympathetic fibers. Similar mRNA levels of TrkC (encoded by NTRK3) and β-adrenoceptors were found in all ATs assayed and in isolated adipocytes. NT3, through TrkC activation, exert a mild effect in lipolysis. Addition of NT3 during the differentiation process of human pre-adipocytes resulted in smaller adipocytes and increased uncoupling protein-1 (UCP-1) without changes in β-adrenoceptors. Similarly, transgenic mice with reduced expression of NT3 (Ntf3 knock-in lacZ reporter mice) or lacking endothelial NT3 expression (Ntf3flox1/flox2;Tie2-Cre+/0) displayed enlarged white and brown adipocytes and lower UCP-1 expression.ConclusionsNT3, mainly released by blood vessels, activates TrkC and regulates adipocyte differentiation and browning. Disruption of NT3/TrkC signaling conducts to hypertrophied white and brown adipocytes with reduced expression of the thermogenesis marker UCP-1.


1994 ◽  
Vol 107 (1) ◽  
pp. 313-319 ◽  
Author(s):  
S. Klaus ◽  
L. Choy ◽  
O. Champigny ◽  
A.M. Cassard-Doulcier ◽  
S. Ross ◽  
...  

The HIB 1B cell line, derived from a brown fat tumor of a transgenic mouse, is the first established brown adipocyte cell line capable of expressing the brown fat-specific mitochondrial uncoupling protein (UCP). UCP gene expression, which was virtually undetectable under basic conditions, was stimulated by acute catecholamine or cyclic AMP treatment to levels comparable to primary cultures of brown adipocytes. Elevation of UCP mRNA levels following stimulation was very rapid but transient, decreasing after about 4 hours with a half-life between 9 and 13 hours. Immunoblotting showed the presence of UCP in HIB 1B mitochondria, but expression was much lower than observed in BAT or primary cultures of brown adipocytes. Upon transfection of HIB 1B cells with a reporter gene containing the UCP promoter, the activity of the transgene was regulatable by cAMP and norepinephrine. Investigation of the possible adrenergic receptors involved in UCP stimulation showed that specific beta 3-adrenergic agonists were much less effective than nonspecific beta-adrenergic agonists and that mRNA levels of the atypical, fat-specific beta 3-adrenoceptor were lower than those observed in brown adipocytes differentiated in primary culture. From pharmacological evidence we conclude that beta 3-adrenergic receptors account for approximately 30–40% of catecholamine induced UCP gene stimulation, whereas about 60–70% is stimulated via the classical beta 1/2 adrenergic pathway. We conclude that HIB 1B cells represent a functional system for the study of mechanisms related to brown adipose thermogenesis.


2014 ◽  
Vol 306 (10) ◽  
pp. C918-C930 ◽  
Author(s):  
Jiyoung Bae ◽  
Carolyn J. Ricciardi ◽  
Debora Esposito ◽  
Slavko Komarnytsky ◽  
Pan Hu ◽  
...  

Pattern recognition receptors (PRR), Toll-like receptors (TLR), and nucleotide-oligomerization domain-containing proteins (NOD) play critical roles in mediating inflammation and modulating functions in white adipocytes in obesity. However, the role of PRR activation in brown adipocytes, which are recently found to be present in adult humans, has not been studied. Here we report that mRNA of TLR4, TLR2, NOD1, and NOD2 is upregulated, paralleled with upregulated mRNA of inflammatory cytokines and chemokines in the brown adipose tissue (BAT) of the obese mice. During brown adipocyte differentiation, mRNA and protein expression of NOD1 and TLR4, but not TLR2 and NOD2, is also increased. Activation of TLR4, TLR2, or NOD1 in brown adipocytes induces activation of NF-κB and MAPK signaling pathways, leading to inflammatory cytokine/chemokine mRNA expression and/or protein secretion. Moreover, activation of TLR4, TLR2, or NOD1 attenuates both basal and isoproterenol-induced uncoupling protein 1 (UCP-1) expression without affecting mitochondrial biogenesis and lipid accumulation in brown adipocytes. Cellular bioenergetics measurements confirm that attenuation of UCP-1 expression by PRR activation is accompanied by suppression of both basal and isoproterenol-stimulated oxygen consumption rates and isoproterenol-induced uncoupled respiration from proton leak; however, maximal respiration and ATP-coupled respiration are not changed. Further, the attenuation of UCP-1 by PRR activation appears to be mediated through downregulation of the UCP-1 promoter activities. Taken together, our results demonstrate the role of selected PRR activation in inducing inflammation and downregulation of UCP-1 expression and mitochondrial respiration in brown adipocytes. Our results uncover novel targets in BAT for obesity treatment and prevention.


Sign in / Sign up

Export Citation Format

Share Document