Cholinergic regulation of Na absorption by turtle colon: role of basolateral K conductance

1986 ◽  
Vol 251 (4) ◽  
pp. C563-C570 ◽  
Author(s):  
C. J. Venglarik ◽  
D. C. Dawson

The mechanism underlying the muscarinic inhibition of colonic Na absorption is unknown. In this study the effects of carbachol on active Na transport and basolateral K conductance were compared in the isolated turtle colon. Carbachol produced a biphasic response in both Na transport and basolateral K conductance. The response consisted of a transient activation followed by a sustained inhibition and was blocked by atropine. Submucosal cholinergic neurons were implicated in the regulation of colonic transport by employing depolarizing agents to release endogenous acetylcholine. Depolarizing agents produced a carbachol-like response that was atropine-sensitive. Finally, experiments with the Ca ionophores, A23187 and ionomycin, suggested that the muscarinic response may be mediated, at least in part, by changes in cellular Ca. These experiments provide evidence that cholinergic neurons are present in the turtle colon submucosa, muscarinic agonists cause a change in basolateral K conductance that may be an important event in the regulation of colonic Na absorption, and a Ca second messenger system may be involved in mediating the response.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2258
Author(s):  
Yu Wang ◽  
Bei Tan ◽  
Yi Wang ◽  
Zhong Chen

Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy. In this review, we briefly describe the distribution of cholinergic neurons, muscarinic, and nicotinic receptors in the central nervous system and their relationship with neural excitability. Then, we summarize the findings from experimental and clinical research on the role of cholinergic signaling in epilepsy. Furthermore, we provide some perspectives on future investigation to reveal the precise role of the cholinergic system in epilepsy.


1996 ◽  
Vol 271 (6) ◽  
pp. C1963-C1972 ◽  
Author(s):  
D. J. Culp ◽  
W. Luo ◽  
L. A. Richardson ◽  
G. E. Watson ◽  
L. R. Latchney

We investigated the role of M1 and M3 receptors in regulating exocrine secretion from acini isolated from rat sublingual glands. In secretion experiments, we derived affinity values (KB) from Schild regression analysis for the antagonists pirenzepine (61.0 nM) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 1.06 nM). The KB for 4-DAMP is similar to its affinity value [equilibrium dissociation constant from competition studies (Ki); 1.81 nM] determined from radioligand competition experiments. In contrast, the KB for pirenzepine is between its high-affinity (17.6 nM) and low-affinity (404 nM) Ki values. In separate secretion experiments, we found that the M1 receptor antagonist, M1-toxin, induces a rightward shift in the concentration-response curve to muscarinic agonist and inhibits maximal secretion by 40%. The inhibitory effect of M1-toxin appears specific for M1 receptor blockade, since the toxin abolishes acinar high-affinity pirenzepine-binding sites and does not inhibit secretion induced by nonmuscarinic agents. Additional pharmacological studies indicate muscarinic receptors do not function through putative neural elements within isolated acini. Our combined results are consistent with both M1 and M3 receptors directly regulating mucous acinar exocrine secretion and indicate M3 receptors alone are insufficient to induce a maximal muscarinic response.


1990 ◽  
Vol 258 (3) ◽  
pp. G432-G439 ◽  
Author(s):  
Y. Z. Wang ◽  
H. J. Cooke ◽  
H. C. Su ◽  
R. Fertel

We tested the hypothesis that the role of histamine in the control of intestinal secretion is mediated by prostaglandins (PGs). The effects of histamine on ion transport were examined in muscle-stripped sheets of mucosa/submucosa set up in flux chambers. Histamine evoked a transient concentration-dependent increase in short-circuit current (Isc) that was reduced by the Cl- transport inhibitor bumetanide. Histamine also caused the release of PGE2. The Isc response to histamine was reduced by indomethacin and piroxicam, which block PG formation, but not by nordihydroguaiaretic acid, which prevents production of lipoxygenase products. 2-Methylhistamine, but not dimaprit, evoked a concentration-dependent increase in Isc. The Isc response to histamine was reduced by the H1-blocker pyrilamine, but not by the H2-antagonist cimetidine. In addition to its direct effect, histamine augmented the responses of endogenously released neurotransmitters with and without indomethacin and hexamethonium. Tetrodotoxin (TTX) reduced the Isc response to 10(-3) M histamine. In the presence of TTX, exogenous histamine amplified the responses to PGs, vasoactive intestinal polypeptide, 2-chloroadenosine, bethanechol, and carbachol. These results suggest that histamine acts at H1-receptors on cells within the gut to mediate intestinal Cl- secretion in part by releasing PGs and by augmenting the actions of endogenously released neurotransmitters. Our results indicate that histamine has a role in the regulation of colonic transport function.


1997 ◽  
Vol 273 (2) ◽  
pp. G447-G455 ◽  
Author(s):  
T. Shea-Donohue ◽  
J. M. Goldhill ◽  
E. Montcalm-Mazzilli ◽  
C. Colleton ◽  
V. M. Pineiro-Carrero ◽  
...  

The role of sensory afferents in inflammation-induced alterations in myoelectric activity in vivo was investigated in the rabbit small intestine. Isolated ileal loops were implanted with serosal electrodes and exposed to ricin or vehicle after pretreatment with 125 mg/kg of subcutaneous (125 mg over 3 days) or intraluminal (640 microM) capsaicin. After 5 h of myoelectric recording, the loops were prepared for histology and for ex vivo generation of eicosanoids. Capsaicin exacerbated mucosal damage after exposure to ricin but did not alter neutrophil infiltration. Subcutaneous capsaicin alone elevated slow-wave frequency and spike events and transiently suppressed the myoelectric response to ricin. In contrast, intraluminal capsaicin alone did not alter myoelectric activity but produced a sustained inhibition of the response to ricin. Eicosanoid production was unchanged by capsaicin alone. Intraluminal capsaicin blocked increases in leukotriene C4 and prostaglandin E2 during inflammation, an effect that paralleled its inhibition of myoelectric activity. Thus the contribution of sensory afferents to altered motility during acute ileitis involves the release of mucosal inflammatory mediators that influence neural control of smooth muscle.


1965 ◽  
Vol 208 (6) ◽  
pp. 1203-1205 ◽  
Author(s):  
M. Pfaffman ◽  
N. Urakawa ◽  
W. C. Holland

Further insight into the underlying mechanism(s) of the K-induced phasic and tonic contractions of the taenia coli of the guinea pig was obtained by examining the effects of various metabolic intermediates, inhibitors of metabolism and active transport, on these responses. Evidence is presented to support the thesis that the tonic response is dependent on the aerobic breakdown of carbohydrates and is abolished by substrate removal, a decrease of temperature, DNP, lithium, and ouabain. These same factors have little or no effect on the phasic response. From the evidence presented, it is concluded that the phasic response is a passive process, whereas the tonic contracture is an active one depending on metabolism and possibly linked to active Na transport.


Sign in / Sign up

Export Citation Format

Share Document