Regulation of rat ventricular myosin heavy chain expression by serum and contractile activity

1994 ◽  
Vol 267 (2) ◽  
pp. C520-C528 ◽  
Author(s):  
M. Qi ◽  
K. Ojamaa ◽  
E. G. Eleftheriades ◽  
I. Klein ◽  
A. M. Samarel

To quantitatively analyze the effects of serum stimulation and contractile activity and their interaction on cellular growth and cardiac myosin heavy chain (MHC) gene expression, spontaneously contracting neonatal rat ventricular myocytes in primary culture were maintained in serum-free growth medium or growth medium supplemented with fetal bovine serum. Contractile activity in paired cultures was inhibited by addition of the calcium channel blocker verapamil (10 microM) to the culture medium. Both serum stimulation and contractile activity produced myocyte hypertrophy as assessed by increases in total protein, total RNA, protein-to-DNA ratios, and total MHC protein content. MHC isoenzyme analysis indicated that both MHC-alpha and MHC-beta proteins accumulated in response to serum stimulation and/or contractile activity. The increases in MHC-beta protein resulting from serum stimulation and contractile activity occurred in parallel with increases in MHC-beta mRNA. In contrast, MHC-alpha mRNA levels were relatively unaffected by serum stimulation but appeared to decrease in response to contractile activity. The protein kinase inhibitor staurosporine (5 nM) reduced MHC-beta expression in serum-free, contracting cultures and also prevented the serum-induced increase in MHC-beta mRNA observed in both contracting and arrested myocytes. Staurosporine also increased MHC-alpha mRNA levels in serum-free, contracting, and verapamil-arrested myocytes. These data suggest that both humoral and mechanical factors regulate MHC isoenzyme expression and cellular growth in neonatal ventricular myocytes.

1996 ◽  
Vol 271 (5) ◽  
pp. C1447-C1456 ◽  
Author(s):  
K. L. Byron ◽  
J. L. Puglisi ◽  
J. R. Holda ◽  
D. Eble ◽  
A. M. Samarel

Blockade of L-type Ca2+ channels in spontaneously contracting cultured neonatal rat ventricular myocytes causes contractile arrest, myofibrillar disassembly, and accelerated myofibrillar protein turnover. To determine whether myofibrillar protein turnover. To determine whether myofibrillar atrophy results indirectly from loss of mechanical signals or directly from alterations in intracellular Ca2+ concentration ([Ca2+]i), contractile activity was inhibited with verapamil (10 microM) or 2,3-butanedione monoxime (BDM), and their effects on cell shortening, [Ca2+]i, and myosin heavy chain (MHC) turnover were assessed. Control cells demonstrated spontaneous [Ca2+]i transients (peak amplitude 232 +/- 15 nM, 1-2 Hz) and vigorous contractile activity. Verapamil inhibited shortening by eliminating spontaneous [Ca2+]i transients. Low concentrations of BDM (5.0-7.5 mM) had no effect on basal or peak [Ca2+]i transient amplitude but reduced cell shortening, whereas 10 mM BDM reduced both [Ca2+]i transient amplitude and shortening. Both agents inhibited MHC synthesis, but only verapamil accelerated MHC degradation. Thus MHC half-life does not change in parallel with contractile activity but rather more closely follows changes in [Ca2+]i. [Ca2+]i transients appear critical in maintaining myofibrillar assembly and preventing accelerated MHC proteolysis.


1997 ◽  
Vol 273 (2) ◽  
pp. C394-C403 ◽  
Author(s):  
M. Qi ◽  
J. L. Puglisi ◽  
K. L. Byron ◽  
K. Ojamaa ◽  
I. Klein ◽  
...  

To determine if mechanical signals or alterations in intracellular Ca2+ concentration ([Ca2+]i) affect myosin heavy chain (MHC) gene expression in spontaneously beating, neonatal rat ventricular myocytes, contractile activity was inhibited with verapamil, KCl, or 2,3-butanedione monoxime (BDM), and their acute and chronic effects on myocyte shortening, [Ca2+]i, and MHC gene expression were examined. Despite their differing effects on [Ca2+]i, verapamil, KCl, and BDM all inhibited contractile activity and markedly downregulated beta-MHC mRNA levels to 24 +/- 5, 21 +/- 7, and 6 +/- 2% of contracting cells, respectively. In contrast, these inhibitors of contraction upregulated alpha-MHC mRNA levels to 163 +/- 19, 156 +/- 7, and 198 +/- 20% of contracting cells, respectively. Transient transfection with a rat beta-MHC promoter-luciferase expression plasmid demonstrated that all inhibitors of contraction significantly decreased beta-MHC promoter activity. Paradoxically, contractile arrest also inhibited alpha-MHC promoter activity, suggesting that increased alpha-MHC mRNA levels resulted from posttranscriptional mechanisms. Actinomycin D mRNA stability assays indicated that alpha-MHC mRNA half-life was prolonged in noncontracting cells (33 h) compared with contracting myocytes (14 h). Contraction-dependent alterations in MHC gene expression were not dependent on release of angiotensin II or other growth factors into the culture medium. Thus intrinsic mechanical signals rather than alterations in [Ca2+]i regulate alpha-MHC and beta-MHC gene expression by both transcriptional and posttranscriptional mechanisms.


1999 ◽  
Vol 276 (6) ◽  
pp. H2013-H2019 ◽  
Author(s):  
Gordana Nikcevic ◽  
Maria C. Heidkamp ◽  
Merja Perhonen ◽  
Brenda Russell

Mechanical inactivity depresses protein expression in cardiac muscle tissue and results in atrophy. We explore the mechanical transduction mechanism in spontaneously beating neonatal rat cardiomyocytes expressing the α-myosin heavy chain (α-MyHC) isoform by interfering with cross-bridge function [2,3-butanedione monoxime (BDM), 7.5 mM] without affecting cell calcium. The polysome content and α-MyHC mRNA levels in fractions from a sucrose gradient were analyzed. BDM treatment blocked translation at initiation (162 ± 12% in the nonpolysomal RNA fraction and 43 ± 6% in the polysomal fraction, relative to control as 100%; P < 0.05). There was an increase in α-MyHC mRNA from the nonpolysomal fraction (120.5 ± 7.7%; P < 0.05 compared with control) with no significant change in the heavy polysomes. In situ hybridization of α-MyHC mRNA was used to estimate message abundance as a function of the distance from the nucleus. The mRNA was dispersed through the cytoplasm in spontaneously beating cells as well as in BDM-treated cells (no significant difference). We conclude that direct inhibition of contractile machinery, but not calcium, regulates initiation of α-MyHC mRNA translation. However, calcium, not pure mechanical signals, appears to be important for message localization.


2004 ◽  
Vol 24 (19) ◽  
pp. 8705-8715 ◽  
Author(s):  
Carmen C. Sucharov ◽  
Steve M. Helmke ◽  
Stephen J. Langer ◽  
M. Benjamin Perryman ◽  
Michael Bristow ◽  
...  

ABSTRACT Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure.


1992 ◽  
Vol 263 (3) ◽  
pp. C642-C652 ◽  
Author(s):  
A. M. Samarel ◽  
M. L. Spragia ◽  
V. Maloney ◽  
S. A. Kamal ◽  
G. L. Engelmann

Mechanical forces influence the growth and metabolism of a variety of cells, including cultured neonatal rat ventricular myocytes. To determine whether mechanical activity affected the synthesis and turnover of myosin heavy chain (MHC) in these striated muscle cells, MHC fractional degradative rates were measured in spontaneously beating cells and in arrested myocytes in which contractile activity was prevented by L-channel blockade (with verapamil, nifedipine, nisoldipine, and diltiazem) or K+ depolarization. MHC degradative rates were measured as the difference between rates of MHC synthesis and accumulation and in pulse-chase biosynthetic labeling experiments. Both methods indicated that contractile arrest markedly increased MHC degradation. Contractile arrest produced by L-channel blockade accelerated MHC degradation to a greater extent than K+ depolarization. The signal transduction pathway linking contractile activity to alterations in MHC degradation did not involve protein kinase C (PKC), because MHC degradation was unaffected by activating PKC in arrested cells or inhibiting PKC in spontaneously beating cells. Chloroquine and E-64 did not suppress the accelerated MHC degradation, suggesting that the rate-limiting step in MHC turnover occurred before degradative processing by cellular proteinases. Using a computer simulation, we hypothesize that the rate-limiting step in MHC turnover preceded (or was coincident with) MHC release from thick filaments. Thus mechanical forces may influence MHC half-life by regulating the rate of myosin disassembly.


1997 ◽  
Vol 110 (23) ◽  
pp. 2969-2978 ◽  
Author(s):  
P. Goldspink ◽  
W. Sharp ◽  
B. Russell

We have altered the spontaneous contractile activity of neonatal cardiac myocytes in culture to investigate the re-lationship between mechanical forces, myofibril assembly, and the localization and translation of (alpha)-myosin heavy chain mRNA. Immunofluorescence and in situ hybridization techniques revealed that contracting myocytes display well aligned myofibrils and a diffuse distribution of (alpha)-myosin heavy chain mRNA. Inhibition of contractile activity with the calcium channel blocker verapamil (10 microM) resulted in myofibril disassembly and a perinuclear mRNA distribution within six hours. There was a significant decrease (P&lt;0. 05) of mRNA levels, 5 to 15 micron away from the nucleus following 6 hours of verapamil treatment compared with control cells. Inhibition of protein synthesis with cycloheximide (10 microM) also resulted in perinuclear mRNA localization despite having little effect on contractile activity or myofibril assembly. To determine if the 3′ untranslated region of (alpha)-myosin heavy chain mRNA was sufficient for localizing the entire message, a chimeric construct composed of beta-galactosidase coding region followed by (alpha)-myosin heavy chain 3′ untranslated region sequences was made as a reporter plasmid and transfected into cultured myocytes. A perinuclear accumulation of ss-galactosidase was exhibited in many of the contractile arrested cells (48.3+/−2.4%, n=7). In contrast, significantly fewer (P&lt;0.05) contracting control (29.1+/−3.3%, n=7) and strongly contracting, isoproterenol-treated cells (27.2+/−6.1%, n=3) exhibited a perinuclear localization of protein. The distribution of the reporter protein was not affected by the contractile state in cells transfected with a constitutively translated 3′UTR. We propose that mechanical activity of neonatal cardiac myocytes regulates the intracellular localization of alpha-myosin heavy chain mRNA via the 3′ untranslated region mediated by an initial block in translation.


Author(s):  
Tara A Shrout

Cardiac hypertrophy is a growth process that occurs in response to stress stimuli or injury, and leads to the induction of several pathways to alter gene expression. Under hypertrophic stimuli, sarcomeric structure is disrupted, both as a consequence of gene expression and local changes in sarcomeric proteins. Cardiac-restricted ankyrin repeat protein (CARP) is one such protein that function both in cardiac sarcomeres and at the transcriptional level. We postulate that due to this dual nature, CARP plays a key role in maintaining the cardiac sarcomere. GATA4 is another protein detected in cardiomyocytes as important in hypertrophy, as it is activated by hypertrophic stimuli, and directly binds to DNA to alter gene expression. Results of GATA4 activation over time were inconclusive; however, the role of CARP in mediating hypertrophic growth in cardiomyocytes was clearly demonstrated. In this study, Neonatal Rat Ventricular Myocytes were used as a model to detect changes over time in CARP and GATA4 under hypertrophic stimulation by phenylephrine and high serum media. Results were detected by analysis of immunoblotting. The specific role that CARP plays in mediating cellular growth under hypertrophic stimuli was studied through immunofluorescence, which demonstrated that cardiomyocyte growth with hypertrophic stimulation was significantly blunted when NRVMs were co-treated with CARP siRNA. These data suggest that CARP plays an important role in the hypertrophic response in cardiomyocytes.


1986 ◽  
Vol 103 (6) ◽  
pp. 2153-2161 ◽  
Author(s):  
L C Cerny ◽  
E Bandman

The expression of neonatal myosin heavy chain (MHC) was examined in developing embryonic chicken muscle cultures using a monoclonal antibody (2E9) that has been shown to be specific for that isoform (Bandman, E., 1985, Science (Wash. DC), 227: 780-782). After 1 wk in vitro some myotubes could be stained with the antibody, and the number of cells that reacted with 2E9 increased with time in culture. All myotubes always stained with a second monoclonal antibody that reacted with all MHC isoforms (AG19) or with a third monoclonal antibody that reacted with the embryonic but not the neonatal MHC (EB165). Quantitation by ELISA of an extract from 2-wk cultures demonstrated that the neonatal MHC represented between 10 and 15% of the total myosin. The appearance of the neonatal isoform was inhibited by switching young cultures to medium with a higher [K+] which has been shown to block spontaneous contractions of myotubes in culture. Furthermore, if mature cultures that reacted with the neonatal antibody were placed into high [K+] medium, neonatal MHC disappeared from virtually all myotubes within 3 d. The effect of high [K+] medium was reversible. When cultures maintained in high [K+] medium for 2 wk were placed in standard medium, which permitted the resumption of contractile activity, within 24 h cells began to react with the neonatal specific antibody, and by 72 h many myotubes were strongly positive. Since similar results were also obtained by inhibiting spontaneous contractions with tetrodotoxin, we suggest that the development of contractile activity is not only associated with the maturation of myotubes in culture, but may also be the signal that induces the expression of the neonatal MHC.


2003 ◽  
Vol 95 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Paige C. Geiger ◽  
Jeffrey P. Bailey ◽  
Wen-Zhi Zhan ◽  
Carlos B. Mantilla ◽  
Gary C. Sieck

Unilateral denervation (Dnv) of the rat diaphragm muscle (Diam) markedly alters expression of myosin heavy chain (MHC) isoforms. After 2 wk of Diam Dnv, MHC content per half-sarcomere decreases in fibers expressing MHC2X and MHC2B. We hypothesized that changes in MHC protein expression parallel changes in MHC mRNA expression. Relative MHC isoform mRNA levels were determined by Northern analysis after 1, 3, 7, and 14 days of Dnv of the rat Diam. MHC protein expression was determined by SDS-PAGE. Changes in MHC isoform protein and mRNA expression were not concurrent. Expression of MHCSlow and MHC2X mRNA isoforms decreased dramatically by 3 days of Dnv, whereas that of MHC2A and MHC2B did not change. Expression of all MHC protein isoforms decreased by 3 days of Dnv. We observed a differential effect of rat Diam Dnv on MHC isoform protein and mRNA expression. The time course of the changes in MHC isoform mRNA and protein expression suggests a predominant effect of altered protein turnover rates on MHC protein expression instead of altered transcription after Dnv.


2002 ◽  
Vol 283 (1) ◽  
pp. H213-H219 ◽  
Author(s):  
Qianxun Xiao ◽  
Agnes Kenessey ◽  
Kaie Ojamaa

Contractile activity of the cardiac myocyte is required for maintaining cell mass and phenotype, including expression of the cardiac-specific α-myosin heavy chain (α-MHC) gene. An E-box hemodynamic response element (HME) located at position −47 within the α-MHC promoter is both necessary and sufficient to confer contractile responsiveness to the gene and has been shown to bind upstream stimulatory factor-1 (USF1). When studied in spontaneously contracting cardiac myocytes, there is enhanced binding of USF1 to the HME compared with quiescent cells, which correlates with a threefold increase in α-MHC promoter activity. A molecular mechanism by which contractile function modulates α-MHC transcriptional activity may involve signaling via phosphorylation of USF1. The present studies showed that purified rat USF1 was phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) but not casein kinase II. Phosphorylated USF1 by either PKC or PKA had increased DNA binding activity to the HME. PKC-mediated phosphorylation also leads to the formation of USF1 multimers as assessed by gel shift assay. Analysis of in vivo phosphorylated nuclear proteins from cultured ventricular myocytes showed that USF1 was phosphorylated, and resolution by two-dimensional gel electrophoresis identified at least two distinct phosphorylated USF1 molecules. These results suggest that endogenous kinases can covalently modify USF1 and provide a potential molecular mechanism by which the contractile stimulus mediates changes in myocyte gene transcription.


Sign in / Sign up

Export Citation Format

Share Document