scholarly journals Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet

2018 ◽  
Vol 315 (6) ◽  
pp. E1251-E1263 ◽  
Author(s):  
Maxim D. Seferovic ◽  
Christine A. Beamish ◽  
Rockann E. Mosser ◽  
Shannon E. Townsend ◽  
Kirk Pappan ◽  
...  

Pancreatic β-cell expansion is a highly regulated metabolic adaptation to increased somatic demands, including obesity and pregnancy; adult β cells otherwise rarely proliferate. We previously showed that high-fat diet (HFD) feeding induces mouse β-cell proliferation in less than 1 wk in the absence of insulin resistance. Here we metabolically profiled tissues from a short-term HFD β-cell expansion mouse model to identify pathways and metabolite changes associated with β-cell proliferation. Mice fed HFD vs. chow diet (CD) showed a 14.3% increase in body weight after 7 days; β-cell proliferation increased 1.75-fold without insulin resistance. Plasma from 1-wk HFD-fed mice induced β-cell proliferation ex vivo. The plasma, as well as liver, skeletal muscle, and bone, were assessed by LC and GC mass-spectrometry for global metabolite changes. Of the 1,283 metabolites detected, 159 showed significant changes [false discovery rate (FDR) < 0.1]. The majority of changes were in liver and muscle. Pathway enrichment analysis revealed key metabolic changes in steroid synthesis and lipid metabolism, including free fatty acids and other bioactive lipids. Other important enrichments included changes in the citric acid cycle and 1-carbon metabolism pathways implicated in DNA methylation. Although the minority of changes were observed in bone and plasma (<20), increased p-cresol sulfate was increased >4 fold in plasma (the largest increase in all tissues), and pantothenate (vitamin B5) decreased >2-fold. The results suggest that HFD-mediated β-cell expansion is associated with complex, global metabolite changes. The finding could be a significant insight into Type 2 diabetes pathogenesis and potential novel drug targets.

2017 ◽  
Vol 313 (3) ◽  
pp. E367-E380 ◽  
Author(s):  
Kazuki Tajima ◽  
Jun Shirakawa ◽  
Tomoko Okuyama ◽  
Mayu Kyohara ◽  
Shunsuke Yamazaki ◽  
...  

Metformin has been widely used for the treatment of type 2 diabetes. However, the effect of metformin on pancreatic β-cells remains controversial. In this study, we investigated the impacts of treatment with metformin on pancreatic β-cells in a mouse model fed a high-fat diet (HFD), which triggers adaptive β-cell replication. An 8-wk treatment with metformin improved insulin resistance and suppressed the compensatory β-cell hyperplasia induced by HFD-feeding. In contrast, the increment in β-cell mass arising from 60 wk of HFD feeding was similar in mice treated with and those treated without metformin. Interestingly, metformin suppressed β-cell proliferation induced by 1 wk of HFD feeding without any changes in insulin resistance. Metformin directly suppressed glucose-induced β-cell proliferation in islets and INS-1 cells in accordance with a reduction in mammalian target of rapamycin phosphorylation. Taken together, metformin suppressed HFD-induced β-cell proliferation independent of the improvement of insulin resistance, partly via direct actions.


2015 ◽  
Vol 308 (7) ◽  
pp. E573-E582 ◽  
Author(s):  
Rockann E. Mosser ◽  
Matthew F. Maulis ◽  
Valentine S. Moullé ◽  
Jennifer C. Dunn ◽  
Bethany A. Carboneau ◽  
...  

Both short- (1 wk) and long-term (2–12 mo) high-fat diet (HFD) studies reveal enhanced β-cell mass due to increased β-cell proliferation. β-Cell proliferation following HFD has been postulated to occur in response to insulin resistance; however, whether HFD can induce β-cell proliferation independent of insulin resistance has been controversial. To examine the kinetics of HFD-induced β-cell proliferation and its correlation with insulin resistance, we placed 8-wk-old male C57Bl/6J mice on HFD for different lengths of time and assayed the following: glucose tolerance, insulin secretion in response to glucose, insulin tolerance, β-cell mass, and β-cell proliferation. We found that β-cell proliferation was significantly increased after only 3 days of HFD feeding, weeks before an increase in β-cell mass or peripheral insulin resistance was detected. These results were confirmed by hyperinsulinemic euglycemic clamps and measurements of α-hydroxybutyrate, a plasma biomarker of insulin resistance in humans. An increase in expression of key islet-proliferative genes was found in isolated islets from 1-wk HFD-fed mice compared with chow diet (CD)-fed mice. These data indicate that short-term HFD feeding enhances β-cell proliferation before insulin resistance becomes apparent.


Author(s):  
Satoru Ato ◽  
Takahiro Mori ◽  
Yuki Fujita ◽  
Taiga Mishima ◽  
Riki Ogasawara

Chronic obesity and insulin resistance are considered to inhibit contraction-induced muscle hypertrophy, through impairment of mTORC1 and muscle protein synthesis (MPS). A high-fat diet is known to rapidly induce obesity and insulin resistance within a month. However, the influence of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute resistance exercise (RE) is unclear. Thus, the purpose of this study was to investigate the effect of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute RE. Male Sprague-Dawley rats were randomly assigned to groups and fed a normal diet (ND), high-fat diet (HFD 4wk), or pair feed (PF 4wk) for 4 weeks. After dietary habituation, acute RE was performed on the gastrocnemius muscle via percutaneous electrical stimulation. The results showed that 4 weeks of a high fat-diet induced intramuscular lipid accumulation and insulin resistance, without affecting basal mTORC1 activity or MPS. The response of RE-induced mTORC1 activation and MPS was not altered by a high-fat diet. On the other hand, analysis of each fiber type demonstrated that response of MPS to an acute RE was disappeared specifically in type I and IIa fiber. These results indicate that a short-term high-fat diet causes anabolic resistance to acute RE, depending on the fiber type.


Author(s):  
Li Hu ◽  
Fengli He ◽  
Yan Luo ◽  
Hairong Luo ◽  
Luo Hai ◽  
...  

Abstract Background High-fat-diet induces pancreatic β-cell compensatory proliferation, and impairments in pancreatic β-cell proliferation and function can lead to defects in insulin secretion and diabetes. NFATc3 is important for HFD-induced adipose tissue inflammation. But it is unknown whether NFATc3 is required for β cell compensatory growth in mice fed with HFD. Methods NFATc3 mRNA and protein expression levels were quantified by RT-qPCR and Western blotting, respectively, in pancreatic islets of WT mice fed on HFD for 12–20 weeks. Adenoviral-mediated overexpression of NFATc3 were conducted in Min6 cells and cultured primary mouse islets. NFATc3-/- mice and WT control mice were fed with HFD and metabolic and functional parameters were measured. Results We observed that the NFATc3 expression level was reduced in the islets of high-fat-diet (HFD)-fed mice. Adenovirus-mediated overexpression of NFATc3 enhanced glucose-stimulated insulin secretion and β-cell gene expression in cultured primary mouse islets. Nfatc3-/- mice initially developed similar glucose tolerance at 2–4 weeks after HFD feeding than HFD-fed WT mice, but Nfatc3-/- mice developed improved glucose tolerance and insulin sensitivity after 8 weeks of HFD feeding compared to Nfatc3+/+fed with HFD. Furthermore, Nfatc3-/- mice on HFD exhibited decreased β-cell mass and reduced expression of genes important for β-cell proliferation and function compared to Nfatc3+/+mice on HFD. Conclusions The findings suggested that NFATc3 played a role in maintaining the pancreatic β-cell compensatory growth and gene expression in response to obesity.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 635
Author(s):  
Yanwen Wang ◽  
Sandhya Nair ◽  
Jacques Gagnon

Although genetic predisposition influences the onset and progression of insulin resistance and diabetes, dietary nutrients are critical. In general, protein is beneficial relative to carbohydrate and fat but dependent on protein source. Our recent study demonstrated that 70% replacement of dietary casein protein with the equivalent quantity of protein derived from herring milt protein hydrolysate (HMPH; herring milt with proteins being enzymatically hydrolyzed) significantly improved insulin resistance and glucose homeostasis in high-fat diet-induced obese mice. As production of protein hydrolysate increases the cost of the product, it is important to determine whether a simply dried and ground herring milt product possesses similar benefits. Therefore, the current study was conducted to investigate the effect of herring milt dry powder (HMDP) on glucose control and the associated metabolic phenotypes and further to compare its efficacy with HMPH. Male C57BL/6J mice on a high-fat diet for 7 weeks were randomized based on body weight and blood glucose into three groups. One group continued on the high-fat diet and was used as the insulin-resistant/diabetic control and the other two groups were given the high-fat diet modified to have 70% of casein protein being replaced with the same amount of protein from HMDP or HMPH. A group of mice on a low-fat diet all the time was used as the normal control. The results demonstrated that mice on the high-fat diet increased weight gain and showed higher blood concentrations of glucose, insulin, and leptin, as well as impaired glucose tolerance and pancreatic β-cell function relative to those on the normal control diet. In comparison with the high-fat diet, the replacement of 70% dietary casein protein with the same amount of HMDP or HMPH protein decreased weight gain and significantly improved the aforementioned biomarkers, insulin sensitivity or resistance, and β-cell function. The HMDP and HMPH showed similar effects on every parameter except blood lipids where HMDP decreased total cholesterol and non-HDL-cholesterol levels while the effect of HMPH was not significant. The results demonstrate that substituting 70% of dietary casein protein with the equivalent amount of HMDP or HMPH protein protects against obesity and diabetes, and HMDP is also beneficial to cholesterol homeostasis.


2010 ◽  
Vol 298 (1) ◽  
pp. G107-G116 ◽  
Author(s):  
Nicolas Lanthier ◽  
Olivier Molendi-Coste ◽  
Yves Horsmans ◽  
Nico van Rooijen ◽  
Patrice D. Cani ◽  
...  

Recruited adipose tissue macrophages contribute to chronic and low-grade inflammation causing insulin resistance in obesity. Similarly, we hypothesized here that Kupffer cells, the hepatic resident macrophages, play a pathogenic role in hepatic insulin resistance induced by a high-fat diet. Mice were fed a normal diet or high-fat diet for 3 days. Kupffer cell activation was evaluated by immunohistochemistry and quantitative RT-PCR. Insulin sensitivity was assessed in vivo by hyperinsulinemic-euglycemic clamp and insulin-activated signaling was investigated by Western blot. Liposome-encapsulated clodronate was injected intravenously to deplete macrophages prior to a short-term exposure to high-fat diet. Here, we characterized a short-term high-fat diet model in mice and demonstrated early hepatic insulin resistance and steatosis concurrent with Kupffer cell activation. We demonstrated that selective Kupffer cell depletion obtained by intravenous clodronate, without affecting adipose tissue macrophages, was sufficient to enhance insulin-dependent insulin signaling and significantly improve hepatic insulin sensitivity in vivo in this short-term high-fat diet model. Our study clearly shows that hepatic macrophage response participates to the onset of high-fat diet-induced hepatic insulin resistance and may therefore represent an attractive target for prevention and treatment of diet- and obesity-induced insulin resistance.


2013 ◽  
Vol 7 (3) ◽  
pp. 244
Author(s):  
Kavin Arasi ◽  
Rockann Mosser ◽  
Maureen Gannon

Development ◽  
2021 ◽  
Author(s):  
Molly K. Altman ◽  
Charles M. Schaub ◽  
Matthew T. Dickerson ◽  
Karolina E. Zaborska ◽  
Prasanna K. Dadi ◽  
...  

The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we utilized various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation, and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, α-cell and β-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences β-cell hyperplasia under insulin resistant conditions. β-cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient β-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we find that TRPM7 ablation alters β-cell Mg2+ and reduces the magnitude of elevation in β-cell Mg2+ during proliferation. Together, these findings reveal that TRPM7 controls pancreatic development and β-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.


Sign in / Sign up

Export Citation Format

Share Document