Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes

2004 ◽  
Vol 286 (6) ◽  
pp. E882-E890 ◽  
Author(s):  
David A. D'Alessio ◽  
Torsten P. Vahl

Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of β-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Enrique Z. Fisman ◽  
Alexander Tenenbaum

AbstractIncretin hormones are peptides released in the intestine in response to the presence of nutrients in its lumen. The main incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). GLP-1 stimulates insulin secretion, inhibits glucagon secretion at pancreatic α cells and has also extrapancreatic influences as slowing of gastric emptying which increases the feeling of satiety. GIP is the main incretin hormone in healthy people, causative of most the incretin effects, but the insulin response after GIP secretion in type 2 diabetes mellitus (T2DM) is strongly reduced. Therefore, in the past GIP has been considered an unappealing therapeutic target for T2DM. This conception has been changing during recent years, since it has been reported that resistance to GIP can be reversed and its effectiveness restored by improving glycemic control. This fact paved the way for the development of a GIP receptor agonist-based therapy for T2DM, looking also for the possibility of finding a combined GLP-1/GIP receptor agonist. In this framework, the novel dual GIP and GLP-1 receptor agonist tirzepatide seems to be not just a new antidiabetic medication. Administered as a subcutaneous weekly injection, it is a manifold single pharmacological agent that has the ability to significantly lower glucose levels, as well as improve insulin sensitivity, reduce weight and amend dyslipidemia favorably modifying the lipid profile. Tirzepatide and additional dual GLP-1/GIP receptor agonists that could eventually be developed in the future seem to be a promising furthest advance for the management of several cardiometabolic settings. Obviously, it is too early to be overly hopeful since it is still necessary to determine the long-term effects of these compounds and properly verify the potential cardiovascular benefits. Anyway, we are currently facing a novel and very appealing therapeutic option.


1995 ◽  
Vol 269 (6) ◽  
pp. G852-G860 ◽  
Author(s):  
R. S. Heller ◽  
G. W. Aponte

Glucagon-like peptide (GLP)-1-(7--36) amide, a peptide product of the posttranslational processing of pancreatic and intestinal proglucagon, has been shown to regulate insulin secretion. Monoclonal antibodies to glucagon and GLP-1-(7--36) amide were generated to localize GLP-1-(7--36) amide in the pancreatic islets by immunocytochemistry and radioimmunoassay. GLP-1-(7--36) amide immunoreactivity was found in some, but not all, glucagon-containing alpha-cells. Displaceable receptor binding for GLP-1-(7--36) amide and nonamidated GLP-1-(7--37) on hormone secretion were investigated using isolated pancreatic islet preparations. GLP-1-(7--37) and -(7--36) amide significantly increased insulin and somatostatin release in the concentration range of 0.01-100 nM in 11.0 mM glucose. GLP-1-(7--37) and -(7--36) amide had no effect on glucagon secretion in the presence of 11.0 mM glucose. GLP-1-(7--36) amide was released from isolated islets in response to 2.25, 5.5, and 11.0 mM glucose. These results suggest that pancreatic GLP-1 may be important in the regulation of intra-islet hormone secretion.


2015 ◽  
Vol 95 (2) ◽  
pp. 513-548 ◽  
Author(s):  
Darleen A. Sandoval ◽  
David A. D'Alessio

The preproglucagon gene ( Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.


2000 ◽  
pp. 717-725 ◽  
Author(s):  
R Perfetti ◽  
P Merkel

Glucagon-like peptide-1 (GLP-1) is a gut hormone synthesized by post-translational processing in intestinal L-cells, and it is released in response to food ingestion. GLP-1 stimulates insulin secretion during hyperglycemia, suppresses glucagon secretion, stimulates (pro)-insulin biosynthesis and decreases the rate of gastric emptying and acid secretion. GLP-1 has also been shown to have a pro-satiety effect. In addition, it has been demonstrated that a long-term infusion with GLP-1, or exendin-4, a long-acting analog of human GLP-1, increases beta-cell mass in rats. In conclusion, GLP-1 appears to regulate plasma glucose levels via various and independent mechanisms. GLP-1 is an excellent candidate option for the treatment of patients with type 2 diabetes mellitus.


2018 ◽  
Vol 13 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Guojun Chen ◽  
Jicheng Yu ◽  
Zhen Gu

Antidiabetic therapeutics, including insulin as well as glucagon-like peptide 1 (GLP-1) and its analogs, are essential for people with diabetes to regulate their blood glucose levels. Nevertheless, conventional treatments based on hypodermic administration is commonly associated with poor blood glucose control, a lack of patient compliance, and a high risk of hypoglycemia. Closed-loop drug delivery strategies, also known as self-regulated administration, which can intelligently govern the drug release kinetics in response to the fluctuation in blood glucose levels, show tremendous promise in diabetes therapy. In the meantime, the advances in the development and use of microneedle (MN)-array patches for transdermal drug delivery offer an alternative method to conventional hypodermic administration. Hence, glucose-responsive MN-array patches for the treatment of diabetes have attracted increasing attentions in recent years. This review summarizes recent advances in glucose-responsive MN-array patch systems. Their opportunities and challenges for clinical translation are also discussed.


2004 ◽  
Vol 286 (2) ◽  
pp. R269-R272 ◽  
Author(s):  
Bo Ahrén

It has been hypothesized that the potent insulinotropic action of the gut incretin hormone glucagon-like peptide-1 (GLP-1) is exerted not only through a direct action on the beta cells but may be partially dependent on sensory nerves. We therefore examined the influence of GLP-1 in mice rendered sensory denervated by neonatal administration of capsaicin performed at days 2 and 5 (50 mg/kg). Control mice were given vehicle. Results show that at 10-16 wk of age in control mice, intravenous GLP-1 at 0.1 or 10 nmol/kg augmented the insulin response to intravenous glucose (1 g/kg) in association with improved glucose elimination. In contrast, in capsaicin-pretreated mice, GLP-1 at 0.1 nmol/kg could not augment the insulin response to intravenous glucose and no effect on glucose elimination was observed. Nevertheless, at the high dose of 10 nmol/kg, GLP-1 augmented the insulin response to glucose in capsaicin-pretreated mice as efficiently as in control mice. The insulin response to GLP-1 from isolated islets was not affected by neonatal capsaicin, and, furthermore, the in vivo insulin response to glucose was augmented whereas that to arginine was not affected by capsaicin. It is concluded that GLP-1-induced insulin secretion at a low dose in mice is dependent on intact sensory nerves and therefore indirectly mediated and that this distinguishes GLP-1 from other examined insulin secretagogues.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2118-2126 ◽  
Author(s):  
Akira Shimotoyodome ◽  
Daisuke Fukuoka ◽  
Junko Suzuki ◽  
Yoshie Fujii ◽  
Tomohito Mizuno ◽  
...  

The precise role of fat in postprandial glycemia and insulinemia has not been thoroughly researched because postprandial blood glucose and concurrent insulin secretion are largely assumed to be proportional to carbohydrate intake. Recent studies have suggested that dietary fat differentially regulates the postprandial insulin response. To explore this, we examined the effects of coadministered fat on glucose-induced glycemia and insulinemia in C57BL/6J mice. The insulin response to glucose was augmented by the addition of glycerol trioleate (TO) in a dose-dependent manner, which was associated with enhanced glucose transport from the circulation to muscle and adipose tissues. To investigate the mechanism underlying fat-induced hyperinsulinemia, we examined the release of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1. TO increased GIP secretion, whereas glucagon-like peptide-1 secretion was unaffected. TO-induced hyperinsulinemia was significantly attenuated by the pretreatment of mice with a specific GIP antagonist. Diacylglycerol (DAG) promoted lower postprandial GIP and triglyceride responses and, when ingested with glucose, a lower insulin response compared with triacylglycerol of a similar fatty acid composition. Pluronic L-81, an inhibitor of chylomicron formation, reduced not only the triglyceride response but also TO-induced GIP secretion, indicating that the lower GIP response after DAG ingestion may be associated with retarded chylomicron formation in the small intestine. We conclude that dietary fat augments glucose-induced insulinemia via gut-derived GIP and, thereby, influences postprandial nutrient metabolism in mice. DAG promotes a lower GIP and thereby reduced insulin responses compared with triacylglycerol, which may differentially influence postprandial energy homeostasis.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Maria Chiara Pelle ◽  
Michele Provenzano ◽  
Isabella Zaffina ◽  
Roberta Pujia ◽  
Federica Giofrè ◽  
...  

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two gut hormones, defined incretins, responsible for the amplification of insulin secretion after oral glucose intake. Unlike GLP-1, GIP has little acute effect on insulin secretion and no effect on food intake; instead it seems that the GIP may be an obesity-promoting hormone. In patients with type2 diabetes mellitus (T2DM) some studies found a downregulation of GIP receptors on pancreatic β cells caused by hyperglycemic state, but the glucagonotropic effect persisted. Agonists of the receptor for the GLP-1 have proven successful for the treatment of diabetes, since they reduce the risk for cardiovascular and renal events, but the possible application of GIP as therapy for T2DM is discussed. Moreover, the latest evidence showed a synergetic effect when GIP was combined with GLP-1 in monomolecular co-agonists. In fact, compared with the separate infusion of each hormone, the combination increased both insulin response and glucagonostatic response. In accordance with theseconsiderations, a dual GIP/GLP-1receptor agonist, i.e., Tirzepatide, known as a “twincretin” had been developed. In the pre-clinical trials, as well as Phase 1–3 clinical trials, Tirzepatideshowedpotent glucose lowering and weight loss effects within an acceptable safety.


2006 ◽  
Vol 191 (1) ◽  
pp. 93-100 ◽  
Author(s):  
J C Parker ◽  
K S Lavery ◽  
N Irwin ◽  
B D Green ◽  
B Greer ◽  
...  

Glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important enteroendocrine hormones that are rapidly degraded by an ubiquitous enzyme dipeptidyl peptidase IV to yield truncated metabolites GIP(3–42) and GLP-1(9–36)amide. In this study, we investigated the effects of sub-chronic exposure to these major circulating forms of GIP and GLP-1 on blood glucose control and endocrine pancreatic function in obese diabetic (ob/ob) mice. A once daily injection of either peptide for 14 days had no effect on body weight, food intake or pancreatic insulin content or islet morphology. GLP-1(9–36)amide also had no effect on plasma glucose homeostasis or insulin secretion. Mice receiving GIP(3–42) exhibited small but significant improvements in non-fasting plasma glucose, glucose tolerance and glycaemic response to feeding. Accordingly, plasma insulin responses were unchanged suggesting that the observed enhancement of insulin sensitivity was responsible for the improvement in glycaemic control. These data indicate that sub-chronic exposure to GIP and GLP-1 metabolites does not result in physiological impairment of insulin secretion or blood glucose control. GIP(3–42) might exert an overall beneficial effect by improving insulin sensitivity through extrapancreatic action.


Sign in / Sign up

Export Citation Format

Share Document