Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in Health and Disease

2015 ◽  
Vol 95 (2) ◽  
pp. 513-548 ◽  
Author(s):  
Darleen A. Sandoval ◽  
David A. D'Alessio

The preproglucagon gene ( Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Enrique Z. Fisman ◽  
Alexander Tenenbaum

AbstractIncretin hormones are peptides released in the intestine in response to the presence of nutrients in its lumen. The main incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). GLP-1 stimulates insulin secretion, inhibits glucagon secretion at pancreatic α cells and has also extrapancreatic influences as slowing of gastric emptying which increases the feeling of satiety. GIP is the main incretin hormone in healthy people, causative of most the incretin effects, but the insulin response after GIP secretion in type 2 diabetes mellitus (T2DM) is strongly reduced. Therefore, in the past GIP has been considered an unappealing therapeutic target for T2DM. This conception has been changing during recent years, since it has been reported that resistance to GIP can be reversed and its effectiveness restored by improving glycemic control. This fact paved the way for the development of a GIP receptor agonist-based therapy for T2DM, looking also for the possibility of finding a combined GLP-1/GIP receptor agonist. In this framework, the novel dual GIP and GLP-1 receptor agonist tirzepatide seems to be not just a new antidiabetic medication. Administered as a subcutaneous weekly injection, it is a manifold single pharmacological agent that has the ability to significantly lower glucose levels, as well as improve insulin sensitivity, reduce weight and amend dyslipidemia favorably modifying the lipid profile. Tirzepatide and additional dual GLP-1/GIP receptor agonists that could eventually be developed in the future seem to be a promising furthest advance for the management of several cardiometabolic settings. Obviously, it is too early to be overly hopeful since it is still necessary to determine the long-term effects of these compounds and properly verify the potential cardiovascular benefits. Anyway, we are currently facing a novel and very appealing therapeutic option.


2004 ◽  
Vol 286 (6) ◽  
pp. E882-E890 ◽  
Author(s):  
David A. D'Alessio ◽  
Torsten P. Vahl

Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of β-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.


2023 ◽  
Vol 76 (07) ◽  
pp. 6374-2023 ◽  
Author(s):  
ALEKSANDRA GÓRSKA ◽  
MARCIN B. ARCISZEWSKI

Recently, interest in glucagon-like peptide-1 (GLP-1) and other peptides derived from preproglucagon has increased significantly. GLP-1 is a 30-amino acid peptide hormone produced in L-type enteroendocrine cells as a response to food intake. GLP-1 is rapidly metabolized and inactivated by the dipeptidyl peptidase IV enzyme before the hormone leaves the intestine, which increases the likelihood that GLP-1 action is transmitted through sensory neurons in the intestine and liver through the GLP-1 receptor. The main actions of GLP-1 are to stimulate insulin secretion (i.e. act as incretin hormone) and inhibit glucagon secretion, thus contributing to the reduction of postprandial glucose spikes. GLP-1 also inhibits motility and gastrointestinal secretion, and therefore acts as part of the „small bowel brake” mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these effects, GLP-1 or GLP-1 receptor agonists are now increasingly used to treat type 2 diabetes. Reduced GLP-1 secretion may contribute to the development of obesity, and excessive secretion may be responsible for postprandial reactive hypoglycemia. The use of GLP-1 agonists opens up new possibilities for the treatment of type 2 diabetes and other metabolic diseases. In the last two decades, many interesting studies covering both the physiological and pathophysiological role of GLP-1 have been published, and our understanding of GLP-1 has broadened significantly. In this review article, we have tried to describe our current understanding of how GLP-1 works as both a peripheral hormone and as a central neurotransmitter in health and disease. We focused on its biological effects on the body and the potential clinical application in relation to current research.


2019 ◽  
Author(s):  
Stephanie L. LeValley ◽  
Catherine Tomaro-Duchesneau ◽  
Robert A. Britton

AbstractMetabolic diseases, including Type 2 Diabetes and obesity, have become increasingly prevalent global health concerns. Studies over the past decade have established connections between the gastrointestinal microbiota and host metabolism, but the mechanisms behind these connections are only beginning to be understood. We were interested in identifying microbes that have the ability to modulate the levels of the incretin hormone glucagon like peptide 1 (GLP-1). Using a human derived cell line that is capable of secreting GLP-1 in response to stimulatory ligands (NCI-H716), we identified supernatants from several bacterial isolates that were capable of decreasing GLP-1 levels, including several strains of Enterococcus faecalis. We further identified the secreted protease GelE, an established virulence factor from E. faecalis, as being responsible for GLP-1 inhibition via direct cleavage of GLP-1 by GelE. Finally, we demonstrated that E. faecalis supernatants can disrupt a colonic epithelial monolayer and cleave GLP-1 in a gelE dependent manner. This work suggests that a secreted factor from an intestinal microbe can traverse the epithelial barrier and impact levels of an important intestinal hormone.ImportanceHumans have a complex and interconnected relationship with their gastrointestinal microbiomes, yet our interest in the microbiome tends to focus on overt pathogenic or probiotic activities, leaving the roles that commensal species may have on host physiology and metabolic processes largely unexplored. Commensal organisms in the microbiome produce and secrete many factors that have an opportunity to interact with the gastrointestinal tract and host biology. Here we show that a secreted protease from E. faecalis, GelE, is able to degrade the gastrointestinal hormone GLP-1, which is responsible for regulating glucose homeostasis and appetite in the body. The disruption of natural GLP-1 signaling by GelE may have significant consequences for maintaining healthy blood glucose levels and in the development of metabolic disease. Furthermore, this work deepens our understanding of specific host-microbiome interactions.


2009 ◽  
Vol 201 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Hong Lan ◽  
Galya Vassileva ◽  
Aaron Corona ◽  
Li Liu ◽  
Hana Baker ◽  
...  

G protein-coupled receptor 119 (GPR119) is expressed in pancreatic islets and intestine, and is involved in insulin and incretin hormone release. GPR119-knockout (Gpr119−/−) mice were reported to have normal islet morphology and normal size, body weight (BW), and fed/fasted glucose levels. However, the physiological function of GPR119 and its role in maintaining glucose homeostasis under metabolic stress remain unknown. Here, we report the phenotypes of an independently generated line of Gpr119−/− mice under basal and high-fat diet (HFD)-induced obesity. Under low-fat diet feeding, Gpr119−/− mice show normal plasma glucose and lipids, but have lower BWs and lower post-prandial levels of active glucagon-like peptide 1 (GLP-1). Nutrient-stimulated GLP-1 release is attenuated in Gpr119−/− mice, suggesting that GPR119 plays a role in physiological regulation of GLP-1 secretion. Under HFD-feeding, both Gpr119+/+ and Gpr119−/− mice gain weight similarly, develop hyperinsulinemia and hyperleptinemia, but not hyperglycemia or dyslipidemia. Glucose and insulin tolerance tests did not reveal a genotypic difference. These data show that GPR119 is not essential for the maintenance of glucose homeostasis. Moreover, we found that oleoylethanolamide (OEA), reported as a ligand for GPR119, was able to suppress food intake in both Gpr119+/+ and Gpr119−/− mice, indicating that GPR119 is not required for the hypophagic effect of OEA. Our results demonstrate that GPR119 is important for incretin and insulin secretion, but not for appetite suppression.


2007 ◽  
Vol 87 (4) ◽  
pp. 1409-1439 ◽  
Author(s):  
Jens Juul Holst

Glucagon-like peptide 1 (GLP-1) is a 30-amino acid peptide hormone produced in the intestinal epithelial endocrine L-cells by differential processing of proglucagon, the gene which is expressed in these cells. The current knowledge regarding regulation of proglucagon gene expression in the gut and in the brain and mechanisms responsible for the posttranslational processing are reviewed. GLP-1 is released in response to meal intake, and the stimuli and molecular mechanisms involved are discussed. GLP-1 is extremely rapidly metabolized and inactivated by the enzyme dipeptidyl peptidase IV even before the hormone has left the gut, raising the possibility that the actions of GLP-1 are transmitted via sensory neurons in the intestine and the liver expressing the GLP-1 receptor. Because of this, it is important to distinguish between measurements of the intact hormone (responsible for endocrine actions) or the sum of the intact hormone and its metabolites, reflecting the total L-cell secretion and therefore also the possible neural actions. The main actions of GLP-1 are to stimulate insulin secretion (i.e., to act as an incretin hormone) and to inhibit glucagon secretion, thereby contributing to limit postprandial glucose excursions. It also inhibits gastrointestinal motility and secretion and thus acts as an enterogastrone and part of the “ileal brake” mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these actions, GLP-1 or GLP-1 receptor agonists are currently being evaluated for the therapy of type 2 diabetes. Decreased secretion of GLP-1 may contribute to the development of obesity, and exaggerated secretion may be responsible for postprandial reactive hypoglycemia.


2019 ◽  
Vol 400 (8) ◽  
pp. 1023-1033 ◽  
Author(s):  
Brian M. Moran ◽  
Michael G. Miskelly ◽  
Yasser H.A. Abdel-Wahab ◽  
Peter R. Flatt ◽  
Aine M. McKillop

Abstract The role of Zn2+-sensing receptor GPR39 on glucose homeostasis and incretin regulation was assessed in enteroendocrine L- and K-cells. Anti-hyperglycaemic, insulinotropic and incretin secreting properties of Zn2+ were explored in normal, diabetic and incretin receptor knockout mice. Compared to intraperitoneal injection, oral administration of Zn2+ (50 μmol/kg body weight) with glucose (18 mmol/kg) in lean mice reduced the glycaemic excursion by 25–34% (p < 0.05–p < 0.001) and enhanced glucose-induced insulin release by 46–48% (p < 0.05–p < 0.01). In diabetic mice, orally administered Zn2+ lowered glucose by 24–31% (p < 0.01) and augmented insulin release by 32% (p < 0.01). In glucagon like peptide-1 (GLP-1) receptor knockout mice, Zn2+ reduced glucose by 15–28% (p < 0.05–p < 0.01) and increased insulin release by 35–43% (p < 0.01). In contrast Zn2+ had no effect on responses of glucose-dependent insulinotropic polypeptide (GIP) receptor knockout mice. Consistent with this, Zn2+ had no effect on circulating total GLP-1 whereas GIP release was stimulated by 26% (p < 0.05) in lean mice. Immunocytochemistry demonstrated GPR39 expression on mouse enteroendocrine L- and K-cells, GLUTag cells and pGIP/Neo STC-1 cells. Zn2+ had a direct effect on GIP secretion from pGIPneo STC-1 cells, increasing GIP secretion by 1.3-fold. GPR39 is expressed on intestinal L- and K-cells, and stimulated GIP secretion plays an integral role in mediating enhanced insulin secretion and glucose tolerance following oral administration of Zn2+. This suggests development of potent and selective GPR39 agonists as a therapeutic approach for diabetes.


Sign in / Sign up

Export Citation Format

Share Document