Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1α and UCP-1 gene expression in brown adipocytes

2009 ◽  
Vol 296 (6) ◽  
pp. E1430-E1439 ◽  
Author(s):  
Masaaki Muraoka ◽  
Aiko Fukushima ◽  
Say Viengchareun ◽  
Marc Lombès ◽  
Fukuko Kishi ◽  
...  

Salt-inducible kinase 2 (SIK2) is expressed abundantly in adipose tissues and represses cAMP-response element-binding protein (CREB)-mediated gene expression by phosphorylating the coactivator transducer of regulated CREB activity (TORC2). Phosphorylation at Ser587 of SIK2 diminishes its TORC2 phosphorylation activity. In 3T3-L1 white adipocytes, SIK2 downregulates lipogenic gene in response to nutritional stresses. To investigate the impact of SIK2 on the function of brown adipose tissue (BAT), we used T37i brown adipocytes, mice with diet-induced obesity, and SIK2 mutant (S587A) transgenic mice. When T37i adipocytes were treated with insulin, the levels of peroxisome proliferator-activated receptor-coactivator-1α ( PGC-1α) and uncoupling protein-1 ( UCP-1) mRNA were increased, and the induction was inhibited by overexpression of SIK2 (S587A) mutant or dominant-negative CREB. Insulin enhanced SIK2 phosphorylation at Ser587, which was accompanied by decrease in phospho-TORC2. Similarly, the decrease in the level of SIK2 phosphorylation at Ser587 was observed in the BAT of mice with diet-induced obesity, which was negatively correlated with TORC2 phosphorylation. To confirm the negative correlation between SIK2 phosphorylation at Ser587 and TORC2 phosphorylation in BAT, SIK2 mutant (S587A) was overexpressed in adipose tissues by using the adipocyte fatty acid-binding protein 2 promoter. The expression of recombinant SIK2 (S587A) was restricted to BAT, and the levels of phospho-TORC2 were elevated in BAT of transgenic mice. Male transgenic mice developed high-fat diet-induced obesity, and their BAT expressed low levels of PGC-1α and UCP-1 mRNA, suggesting that SIK2-TORC2 cascade may be important for the regulation of PGC-1α and UCP-1 gene expression in insulin signaling in BAT.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saki Takayanagi ◽  
Kengo Watanabe ◽  
Takeshi Maruyama ◽  
Motoyuki Ogawa ◽  
Kazuhiro Morishita ◽  
...  

AbstractRecent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


2005 ◽  
Vol 288 (1) ◽  
pp. E117-E124 ◽  
Author(s):  
Mayumi Takahashi ◽  
Yasutomi Kamei ◽  
Osamu Ezaki

Obesity is a common and serious metabolic disorder in the developed world that is occasionally accompanied by type II diabetes, atherosclerosis, hypertension, and hyperlipidemia. We have found that mesoderm-specific transcript (Mest)/paternally expressed gene 1 (Peg1) gene expression was markedly enhanced in white adipose tissue of mice with diet-induced and genetically caused obesity/diabetes but not with streptozotocin-induced diabetes, which does not cause obesity. Administration of pioglitazone, a drug for type II diabetes and activator of peroxisome proliferator-activated receptor (PPAR)γ, in obese db/ db mice reduced the enhanced expression of Mest mRNA in adipose tissue, concomitant with an increase in body weight and a decrease in the size of adipose cells. Ectopic expression of Mest in 3T3-L1 cells caused increased gene expression of adipose markers such as PPARγ, CCAAT/enhancer binding protein (C/EBP)α, and adipocyte fatty acid binding protein (aP)2. In transgenic mice overexpressing Mest in adipose tissue, enhanced expression of the adipose genes was observed. Moreover, adipocytes were markedly enlarged in the transgenic mice. Thus Mest appears to enlarge adipocytes and could be a novel marker of the size of adipocytes.


2019 ◽  
Vol 11 (9) ◽  
pp. 781-790 ◽  
Author(s):  
Wen Meng ◽  
Xiuci Liang ◽  
Ting Xiao ◽  
Jing Wang ◽  
Jie Wen ◽  
...  

Abstract Increasing brown and beige fat thermogenesis have an anti-obesity effect and thus great metabolic benefits. However, the molecular mechanisms regulating brown and beige fat thermogenesis remain to be further elucidated. We recently found that fat-specific knockout of Rheb promoted beige fat thermogenesis. In the current study, we show that Rheb has distinct effects on thermogenic gene expression in brown and beige fat. Fat-specific knockout of Rheb decreased protein kinase A (PKA) activity and thermogenic gene expression in brown adipose tissue of high-fat diet-fed mice. On the other hand, overexpression of Rheb activated PKA and increased uncoupling protein 1 expression in brown adipocytes. Mechanistically, Rheb overexpression in brown adipocytes increased Notch expression, leading to disassociation of the regulatory subunit from the catalytic subunit of PKA and subsequent PKA activation. Our study demonstrates that Rheb, by selectively modulating thermogenic gene expression in brown and beige adipose tissues, plays an important role in regulating energy homeostasis.


Author(s):  
Yuko Ishii ◽  
Orie Muta ◽  
Tomohiro Teshima ◽  
Nayuta Hirasima ◽  
Minayu Odaka ◽  
...  

We previously found increases in uncoupling protein (Ucp)-1 transcription in brown adipose tissue (BAT) of mice following a single oral dose of flavan 3-ols (FL), a fraction of catechins and procyanidins. It was confirmed that these changes were totally reduced by co-treatment of adrenaline blockers. According to these previous results, FL possibly activates sympathetic nervous system (SNS). In this study, we confirmed the marked increase in urinary catecholamine (CA) s projecting SNS activity following a single dose of 50 mg/kg FL. In addition, we examined the impact of the repeated administration of 50 mg/kg FL for 14 days on adipose tissues in mice. In BAT, FL tended to increase the level of Ucp-1 along with thermogenic transcriptome factors, such as peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and PR domain-containing (PRDM)1. Transcription of browning markers, such as CD137 and transmembrane protein (TMEM) 26 in addition to PGC-1α were increased in epididymal adipose (eWAT) by FL. A multilocular morphology with cell size reduction was shown in the inguinal adipose (iWAT), together with increasing the level of Ucp-1 following administration of FL. These results suggest that FL produces browning in adipose through activation of the SNS.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4214
Author(s):  
Yuko Ishii ◽  
Orie Muta ◽  
Tomohiro Teshima ◽  
Nayuta Hirasima ◽  
Minayu Odaka ◽  
...  

We previously found increases in uncoupling protein (Ucp)-1 transcription in brown adipose tissue (BAT) of mice following a single oral dose of flavan 3-ol (FL)s, a fraction of catechins and procyanidins. It was confirmed that these changes were totally reduced by co-treatment of adrenaline blockers. According to these previous results, FLs possibly activate sympathetic nervous system (SNS). In this study, we confirmed the marked increase in urinary catecholamine (CA) s projecting SNS activity following a single dose of 50 mg/kg FLs. In addition, we examined the impact of the repeated administration of 50 mg/kg FLs for 14 days on adipose tissues in mice. In BAT, FLs tended to increase the level of Ucp-1 along with significant increase of thermogenic transcriptome factors expressions, such as peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and PR domain-containing (PRDM)1. Expression of browning markers, CD137 and transmembrane protein (TMEM) 26, in addition to PGC-1α were increased in epididymal adipose (eWAT) by FLs. A multilocular morphology with cell size reduction was shown in the inguinal adipose (iWAT), together with increasing the level of Ucp-1 by FLs. These results exert that FLs induce browning in adipose, and this change is possibly produced by the activation of the SNS.


2017 ◽  
Vol 3 (6) ◽  
pp. 443
Author(s):  
Mas Rizky A.A Syamsunarno ◽  
Mirasari Putri ◽  
Tatsuya Iso ◽  
Rini Widyastuti ◽  
Ramdan Panigoro ◽  
...  

Brown Adipose Tissue (BAT) is a nonshivering thermogenesis organ during cold exposure. Peroxisomal proliferator activated receptor alpha (PPARa) is the member of the nuclear hormone receptor superfamily and primarily expressed in BAT and liver. PPARa is coordinated with uncoupling protein 1 (UCP1) to regulate fatty acid metabolism in BAT. Fatty acid binding protein (FABP)-4 and-5 play role in adaptive response under fasting and cold exposure. The purpose of this study was to investigate the expression of PPARa in mice with FABP4/5 deficiency (DKO). Wildtype (WT) and DKO mice were exposed to cold for 2 hours under fed or 20 hours-fasted conditions. BAT was collected and further mRNA level of PPARa was examined using quantitative real-time PCR. As the result, PPARa gene expression in WT mice were increased 50% and 100% in fed and fasted condition respectively after cold exposure. There was no alteration in PPARa expression in  BAT of DKO mice. As conclusion, The functional FABP-4 and -5 are necessary to modulate PPARa gene expression in Brown Adipose Tissue under acute cold exposure  Keywords: Acute cold exposure; FABP4; FABP5; Fasting  PPARa


2021 ◽  
Author(s):  
Noushin Hadadi ◽  
Martina Spiljar ◽  
Karin Steinbach ◽  
Gabriela Salinas ◽  
Doron Merkler ◽  
...  

ABSTRACTCold exposure is an extensively used intervention for enhancing thermogenic and mitochondrial activity in adipose tissues. As such, it has been suggested as a potential lifestyle intervention for body weight maintenance. The metabolic consequences of cold acclimation are not limited to the adipose tissues, however the impact on rest of the tissues in context of their gene expression profile remains unclear. Here we provide a systematic characterization of cold exposure-mediated effects in a comparative multi-tissue RNA sequencing approach using wide range of organs including spleen, bone marrow, spinal cord, brain, hypothalamus, ileum, liver, subcutaneous-, visceral- and brown adipose tissues. Our findings highlight that transcriptional responses to cold exposure exhibit high degree of tissue-specificity both at the gene level and at GO enrichment gene sets, which is not directed by the basal gene expression pattern exhibited by the various organs. Our study places the cold adaptation of individual tissues in a whole-organism framework and provides an integrative transcriptional analysis necessary for understanding the cold exposure-mediated biological reprograming.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3909
Author(s):  
Melissa S. Totten ◽  
Derek M. Pierce ◽  
Keith M. Erikson

The aim of this study was to determine the impact of diet-induced obesity (DIO) on trace element homeostasis and gene expression in the olfactory bulb and to identify potential interaction effects between diet, sex, and strain. Our study is based on evidence that obesity and olfactory bulb impairments are linked to neurodegenerative processes. Briefly, C57BL/6J (B6J) and DBA/2J (D2J) male and female mice were fed either a low-fat diet or a high-fat diet for 16 weeks. Brain tissue was then evaluated for iron, manganese, copper, and zinc concentrations and mRNA gene expression. There was a statistically significant diet-by-sex interaction for iron and a three-way interaction between diet, sex, and strain for zinc in the olfactory bulb. Obese male B6J mice had a striking 75% increase in iron and a 50% increase in manganese compared with the control. There was an increase in zinc due to DIO in B6J males and D2J females, but a decrease in zinc in B6J females and D2J males. Obese male D2J mice had significantly upregulated mRNA gene expression for divalent metal transporter 1, alpha-synuclein, amyloid precursor protein, dopamine receptor D2, and tyrosine hydroxylase. B6J females with DIO had significantly upregulated brain-derived neurotrophic factor expression. Our results demonstrate that DIO has the potential to disrupt trace element homeostasis and mRNA gene expression in the olfactory bulb, with effects that depend on sex and genetics. We found that DIO led to alterations in iron and manganese predominantly in male B6J mice, and gene expression dysregulation mainly in male D2J mice. These results have important implications for health outcomes related to obesity with possible connections to neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document