Acute effect of insulin on nitric oxide synthesis in humans: a precursor-product isotopic study

2007 ◽  
Vol 293 (3) ◽  
pp. E776-E782 ◽  
Author(s):  
Paolo Tessari ◽  
Anna Coracina ◽  
Lucia Puricelli ◽  
Monica Vettore ◽  
Alessandra Cosma ◽  
...  

Nitric oxide (NO) is a key regulatory molecule with wide vascular, cellular, and metabolic effects. Insulin affects NO synthesis in vitro. No data exist on the acute effect of insulin on NO kinetics in vivo. By employing a precursor-product tracer method in humans, we have directly estimated the acute effect of insulin on intravascular NOx (i.e., the NO oxidation products) fractional (FSR) and absolute (ASR) synthesis rates in vivo. Nine healthy male volunteers were infused iv with l-[15N2-guanidino]arginine ([15N2]arginine) for 6 h. Timed measurements of 15NOx and [15N2]arginine enrichments in whole blood were performed in the first 3 h in the fasting state and then following a 3-h euglycemic-hyperinsulinemic clamp (with plasma insulin raised to ≈1,000 pmol/l). In the last 60 min of each experimental period, at ≈steady-state arginine enrichment, a linear increase of 15NOx enrichment (mean r = 0.9) was detected in both experimental periods. In the fasting state, NOx FSR was 27.4 ± 4.3%/day, whereas ASR was 0.97 ± 0.36 mmol/day, accounting for 0.69 ± 0.27% of arginine flux. Following hyperinsulinemia, both FSR and ASR of NOx increased (FSR by ≈50%, to 42.4 ± 6.7%/day, P < 0.005; ASR by ≈25%, to 1.22 ± 0.41 mmol/day, P = 0.002), despite a ≈20–30% decrease of arginine flux and concentration. The fraction of arginine flux used for NOx synthesis was doubled, to 1.13 ± 0.35% ( P < 0.003). In conclusion, whole body NOx synthesis can be directly measured over a short observation time with stable isotope methods in humans. Insulin acutely stimulates NOx synthesis from arginine.

2008 ◽  
Vol 54 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Renke Maas ◽  
Edzard Schwedhelm ◽  
Lydia Kahl ◽  
Huige Li ◽  
Ralf Benndorf ◽  
...  

Abstract Background: Endothelial function is impaired in hypercholesterolemia and atherosclerosis. Based on mostly indirect evidence, this impairment is attributed to reduced synthesis or impaired biological activity of endothelium-derived nitric oxide (NO). It was the aim of this study to directly estimate and compare whole-body NO production in normo- and hypercholesterolemia by applying a nonradioactive stable isotope dilution technique in vivo. Methods: We enrolled 12 normocholesterolemic and 24 hypercholesterolemic volunteers who were all clinically healthy. To assess whole-body NO synthesis, we intravenously administered l-[guanidino-(15N2)]-arginine and determined the urinary excretion of 15N-labeled nitrate, the specific end product of NO oxidation in humans, by use of gas chromatography-mass spectrometry. In addition, we measured flow-mediated vasodilation (FMD) of the brachial artery, expression of endothelial NOS (eNOS) in platelets, plasma concentration of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), and urinary excretion of 8-isoprostaglandin F2α (8-iso-PGF2α). Results: After infusion of l-[guanidino-(15N2)]-arginine, cumulative excretion of 15N-labeled-nitrate during 48 h was 40% [95% CI 15%–66%] lower in hypercholesterolemic than normocholesterolemic volunteers [mean 9.2 (SE 0.8) μmol vs 15.4 (2.3) μmol/l, P = 0.003]. FMD was on average 36% [4%–67%] lower in hypercholesterolemic than normocholesterolemic volunteers [6.3 (4.0)% vs 9.4 (4.6)%, P = 0.027]. Normalized expression of NOS protein in platelets was also significantly lower in hypercholesterolemic volunteers, whereas there were no significant differences in plasma ADMA concentration or urinary excretion of 8-iso-PGF2α between the 2 groups. Conclusions: This study provides direct evidence for a decreased whole body NO synthesis rate in healthy people with hypercholesterolemia.


2006 ◽  
Vol 290 (6) ◽  
pp. E1068-E1077 ◽  
Author(s):  
Philippe Linscheid ◽  
Dalma Seboek ◽  
Henryk Zulewski ◽  
Arnaud Scherberich ◽  
Nenad Blau ◽  
...  

Nitric oxide (NO) has been recognized as a potential mediator of inflammation-induced metabolic alterations, including insulin resistance. However, expression mechanisms and potential roles of endothelial and inducible NO synthases (eNOS and iNOS, respectively) in human adipocytes are poorly understood. In the present study, we aimed to analyze several aspects of NO-related gene expression and metabolite synthesis in basal and inflammation-activated human adipocyte models. eNOS mRNA was highly expressed in omental and to a lesser extent in human subcutaneous adipose tissue biopsies, but not in purified adipocytes, in mesenchymal stem cell (MSC)- and in preadipocyte-derived adipocytes, respectively. Trace amounts of iNOS mRNA were detected in adipose tissue samples of donors with abdominal infection, as opposed to noninfected subjects. Interferon-γ, in combination with interleukin-1β or lipopolysaccharide, evoked a transient (4 h < time < 24 h) iNOS mRNA expression in human MSC and preadipocyte-derived adipocytes, respectively. This induction was preceded by cytokine-specific mRNAs. In addition, it was accompanied by an activation of the tetrahydrobiopterin synthesis pathway and by inhibition of peroxisome proliferator-activated receptor-γ2. In contrast to murine 3T3-L1-derived adipocytes, iNOS protein and NO oxidation products remained undetectable in iNOS mRNA-positive human adipocytes. Accordingly, coadministration of NOS inhibitors (i.e., Nω-nitro-l-arginine methyl ester, Nω-monomethyl-l-arginine, and 1400W) had no effects on insulin-mediated glucose uptake and lipolysis. We conclude that, in human adipocytes, endogenous NO is not involved in metabolic regulation during either basal or cytokine-activated conditions.


1997 ◽  
Vol 272 (6) ◽  
pp. L1167-L1173 ◽  
Author(s):  
S. P. Kantrow ◽  
Y. C. Huang ◽  
A. R. Whorton ◽  
E. N. Grayck ◽  
J. M. Knight ◽  
...  

Nitric oxide (NO.) has been proposed to modulate hypoxic vasoconstriction in the lung. The activity of nitric oxide synthase (NOS) can be inhibited by hypoxia because molecular oxygen is a necessary substrate for the enzyme. On the basis of this mechanism, we hypothesized that NOS activity has a key role in regulation of pulmonary vascular tone during hypoxia. We measured oxidation products of NO. released into the vasculature of isolated buffer-perfused rabbit lung ventilated with normoxic (21% O2), moderately hypoxic (5% O2), or anoxic (0% O2) gas using two methods. Mean PO2 in perfusate exiting the lung was 25 Torr during anoxic ventilation and 47 Torr during moderately hypoxic ventilation. We found that the amount of the NO. oxidation product nitrite released into the perfusate was suppressed significantly during ventilation with anoxic but not moderately hypoxic gas. During normoxic ventilation, nitrite release was inhibited by pretreatment with NG-monomethyl-L-arginine, a competitive inhibitor of NOS. To confirm that changes in nitrite concentration reflected changes in NO. release into the perfusate, major oxidation products of NO. (NOx) were assayed using a method for reduction of these products to NO. by vanadium(III) Cl. Release of NOx into the perfusate was suppressed by severe hypoxia (anoxic ventilation), and this effect was reversed by normoxia. Pulmonary vasoconstriction was observed during severe but not moderate hypoxia and was related inversely to the rate of nitrite release. These observations provide evidence that decreased NO. production contributes to the pulmonary vasoconstrictor response during severe hypoxia.


1997 ◽  
Vol 272 (6) ◽  
pp. R1747-R1753 ◽  
Author(s):  
C. Hill ◽  
A. M. Lateef ◽  
K. Engels ◽  
L. Samsell ◽  
C. Baylis

To investigate the activity of nitric oxide (NO) in control of renal hemodynamics during aging, studies were conducted on conscious Sprague-Dawley rats aged 3-5 mo (young, Y) and 18-22 mo (old, O). Blood pressure (BP) and renal vascular resistance (RVR) were higher in O vs. Y in control, and acute systemic NO synthesis inhibition (NOSI) increased BP and RVR, with an enhanced renal vasoconstrictor response in O. Infusion of the NO substrate L-arginine produced similar, selective renal vasodilation in both groups. The endothelium-dependent vasodilator acetylcholine caused similar falls in BP and RVR, whereas sodium nitroprusside produced an exaggerated depressor response in O vs. Y without falls in RVR in either age group. Urinary excretion of the stable NO oxidation products (NOx) decreased with age, suggesting a decline in the overall somatic NO production. In conclusion, basal tonically produced NO has a more pronounced role in maintenance of renal perfusion in aging, whereas L-arginine- and agonist-stimulated renal vasodilation is not impaired with age. NO production from some source may be reduced with aging, as indicated by falls in 24-h NOX excretion, although the similarity in pressor response and enhanced renal vasoconstrictor response to NOSI suggests that the role of NO in control of total peripheral and renal vascular resistance is maintained.


1996 ◽  
Vol 42 (3) ◽  
pp. 440-444 ◽  
Author(s):  
I M Mackenzie ◽  
A Ekangaki ◽  
J D Young ◽  
C S Garrard

Abstract Nitric oxide is too short-lived to measure in vivo, but its production can be estimated by measuring its stable oxidation products, nitrites and nitrates, in serum. Renal elimination of these ions has been demonstrated, but the effect of renal function on their concentrations in serum is currently unknown. We evaluated serum and urine nitrates + nitrites as serum nitrogen oxides (sNOx), nitrogen oxide (NOx) clearance, and creatinine clearance in 71 patients on the Intensive Therapy Unit. The correlation between sNOx and plasma creatinine was strong and highly significant (P &lt;0.001). These results suggest that renal function has a significant effect on sNOx concentrations. Studies in which the sNOx concentration is used as an index of nitric oxide production can therefore be interpreted only if renal function has been taken into account.


2007 ◽  
Vol 292 (6) ◽  
pp. C1993-C2003 ◽  
Author(s):  
Chris E. Cooper ◽  
Cecilia Giulivi

Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism of this interaction and the consequences for its likely physiological role. The oxygen reactive site in cytochrome oxidase contains both heme iron ( a3) and copper (CuB) centers. NO inhibits cytochrome oxidase in both an oxygen-competitive (at heme a3) and oxygen-independent (at CuB) manner. Before inhibition of oxygen consumption, changes can be observed in enzyme and substrate (cytochrome c) redox state. Physiological consequences can be mediated either by direct “metabolic” effects on oxygen consumption or via indirect “signaling” effects via mitochondrial redox state changes and free radical production. The detailed kinetics suggest, but do not prove, that cytochrome oxidase can be a target for NO even under circumstances when guanylate cyclase, its primary high affinity target, is not fully activated. In vivo organ and whole body measures of NO synthase inhibition suggest a possible role for NO inhibition of cytochrome oxidase. However, a detailed mapping of NO and oxygen levels, combined with direct measures of cytochrome oxidase/NO binding, in physiology is still awaited.


1995 ◽  
Vol 268 (3) ◽  
pp. L501-L508 ◽  
Author(s):  
H. H. Gutierrez ◽  
B. R. Pitt ◽  
M. Schwarz ◽  
S. C. Watkins ◽  
C. Lowenstein ◽  
...  

Nitric oxide (.NO) is a short-lived mediator that can be induced by different cytokines and lipopolysaccharide (LPS) in a variety of cell types and produces many physiological and metabolic changes in target cells. In the current study, we show that a combination of cytokines, LPS, and zymosan-activated serum (ZAS; called for convenience cytomix Z) induces production of high concentrations of the NO oxidation products nitrite (NO2-) and nitrate (NO3-) by cultured rat fetal lung epithelial type II cells in a time-dependent fashion. Interferon-gamma and tumor necrosis factor-alpha alone did not significantly affect .NO synthesis, whereas ZAS, LPS, and interleukin-1 beta caused only a modest increase in formation of .NO oxidation products. Production of NO2- and NO3- was inhibited by NG-monomethyl-L-arginine and cyclohexmide. After exposure of these cells to a combination of the above cytokines, Escherichia coli LPS, and ZAS (cytomix Z), enhanced inducible nitric oxide synthase (iNOS) expression was indicated by an elevation in steady-state mRNA specific for iNOS (via Northern blot analysis) and increased immunofluorescence for iNOS after cell permeabilization, incubation with anti-iNOS antibody, and treatment with Cy3.18-conjugated rabbit-specific antibody. The extent of inflammatory mediator-induced.NO production by alveolar epithelium, which exceeds that of other lung cell types, reveals new insight into mechanisms of pulmonary host defense and pathways of free radical-mediated lung injury.


2003 ◽  
Vol 285 (6) ◽  
pp. H2264-H2276 ◽  
Author(s):  
David A. Wink ◽  
Katrina M. Miranda ◽  
Tatsuo Katori ◽  
Daniele Mancardi ◽  
Douglas D. Thomas ◽  
...  

Endogenous formation of nitric oxide (NO) and related nitrogen oxides in the vascular system is critical to regulation of multiple physiological functions. An imbalance in the production or availability of these species can result in progression of disease. Nitrogen oxide research in the cardiovascular system has primarily focused on the effects of NO and higher oxidation products. However, nitroxyl (HNO), the one-electron-reduction product of NO, has recently been shown to have unique and potentially beneficial pharmacological properties. HNO and NO often induce discrete biological responses, providing an interesting redox system. This article discusses the emerging aspects of HNO chemistry and attempts to provide a framework for the distinct effects of NO and HNO in vivo.


1985 ◽  
Vol 248 (5) ◽  
pp. E567-E574 ◽  
Author(s):  
D. E. James ◽  
A. B. Jenkins ◽  
E. W. Kraegen

The euglycemic hyperinsulinemic clamp technique in conscious unrestrained rats was used to examine the effect of insulin on glucose metabolism in metabolically distinct skeletal muscle in vivo. Tissue glucose metabolic rate (R'g) was estimated using 2-[3H]-deoxyglucose, and glucose disposal was examined by measuring glycogen content and [14C]glucose incorporation into glycogen in four different muscles. Insulin sensitivity varied among different muscle types in that the insulin concentration required for half-maximal stimulation of R'g was 80, 150, 280, and 320 mU/1 for soleus (SOL), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus, respectively. There were similar relative differences in the maximal effect of insulin on R'g in these muscles. Maximal insulin stimulation almost doubled muscle glycogen content in RG and SOL, whereas there was no change in WG. The relationship between R'g and glycogen synthesis indicated that increased glucose uptake resulted predominantly in glycogen storage. There was an excellent relationship between maximal R'g and blood flow in different muscles. We conclude that there is marked heterogeneity in insulin sensitivity and responsiveness among muscles of different fiber composition. Insulin-induced increases in total peripheral glucose disposal occur predominantly in muscles containing a high proportion of oxidative fibers. Therefore the relative proportion of oxidative to glycolytic muscle fibers may be important factors in determining whole body insulin sensitivity.


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5262-5272 ◽  
Author(s):  
Tayeba Khan ◽  
Mark P. Hamilton ◽  
Dorothy I. Mundy ◽  
Streamson C. Chua ◽  
Philipp E. Scherer

Abstract Statins belong to a class of drugs well known for their ability to reduce circulating low-density lipoprotein cholesterol. In addition to cholesterol lowering, they also exhibit potential antiinflammatory and antioxidant properties, suggesting that tissues other than liver may be targeted by statins to exert their beneficial metabolic effects. Adipocytes have received very little attention as a potential target of these drugs, possibly because adipocytes are not a major source of biosynthetic cholesterol. Here, we examine the effects of simvastatin on the secretory pathway, inflammation, and cellular metabolism of adipocytes as well as on whole-body insulin sensitivity. We find that statins have a selective effect on the secretion of the insulin-sensitizing adipokine adiponectin by reducing circulating levels of the high-molecular-weight form of adiponectin specifically with a concomitant increase in intracellular adiponectin levels. However, these effects on adiponectin do not translate into changes in metabolism or whole-body insulin sensitivity, potentially due to additional antiinflammatory properties of statins. In addition, ob/ob mice treated with statins have reduced adiposity and an altered ultrastructure of the plasma membrane with respect to caveolar histology. Our data demonstrate that statins have major effects on the cellular physiology of the adipocyte on multiple levels.


Sign in / Sign up

Export Citation Format

Share Document