Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue

2005 ◽  
Vol 289 (1) ◽  
pp. E68-E74 ◽  
Author(s):  
Michael Koban ◽  
Kevin L. Swinson

A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing ∼11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.

Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1679-1689 ◽  
Author(s):  
Patricia Seoane-Collazo ◽  
Pablo B. Martínez de Morentin ◽  
Johan Fernø ◽  
Carlos Diéguez ◽  
Rubén Nogueiras ◽  
...  

Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.


1989 ◽  
Vol 66 (4) ◽  
pp. 1970-1975 ◽  
Author(s):  
J. Arnold ◽  
R. A. Little ◽  
N. J. Rothwell

The effects of continuously administered endotoxin on 7-day energy balance were investigated in male rats. Three groups of rats were implanted with osmotic pumps; two groups received saline-filled pumps, whereas the third received endotoxin. One of the saline groups was pair fed to match the food intake of the endotoxemic rats. After 7 days, body energy and protein and fat contents of rats were determined together with the energy content of food and feces. Endotoxin infusion not only induced fever, but it also suppressed appetite and significantly decreased body weight gain. Metabolizable energy intake was reduced by approximately 20% in infected rats. Although protein and fat gains were lowest in the endotoxin group, there appeared to be a selective loss of protein when considered as percent of body weight. Percent body fat was unaltered between the groups. Energy expenditure considered in absolute (kJ) or body weight-independent (kJ/kg0.67) terms yielded similar patterns of results; expenditure (kJ) was 10 and 20% (P less than 0.05, P less than 0.01) lower in the endotoxemic and pair-fed rats, respectively, compared with controls. Hence, compared with pair-fed rats, endotoxin-infused animals had a 10% rise in their expenditure. Brown adipose tissue thermogenesis was assessed by mitochondrial binding of guanosine 5′-diphosphate, and results showed that binding was greatest in endotoxemic rats and lowest in the pair-fed animals. The present results suggest that in this endotoxemic model appetite suppression exacerbates changes in energy balance. However, the reduction in body weight gain is also dependent on a decrease in metabolic efficiency and an increase in total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 44 (13) ◽  
pp. 678-688 ◽  
Author(s):  
Sara Becerril ◽  
Amaia Rodríguez ◽  
Victoria Catalán ◽  
Neira Sáinz ◽  
Beatriz Ramírez ◽  
...  

Leptin and nitric oxide (NO) are implicated in the control of energy homeostasis. The aim of the present study was to examine the impact of the absence of the inducible NO synthase ( iNOS) gene on the regulation of energy balance in ob/ob mice analyzing the changes in gene expression levels in brown adipose tissue (BAT). Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated and the expression of genes involved in energy balance including fatty acid and glucose metabolism as well as mitochondrial genes were analyzed by microarrays. DBKO mice exhibited an improvement in energy balance with a decrease in body weight ( P < 0.001), total fat pads ( P < 0.05), and food intake ( P < 0.05), as well as an enhancement in BAT function compared with ob/ob mice. To better understand the molecular events associated with this improvement, BAT gene expression was analyzed. Of particular interest, gene expression levels of the key subunit of the Mediator complex Med1 was upregulated ( P < 0.05) in DBKO mice. Real-time PCR and immunohistochemistry further confirmed this data. Med1 is implicated in adipogenesis, lipid metabolic and biosynthetic processes, glucose metabolism, and mitochondrial metabolic pathways. Med1 plays an important role in the transcriptional control of genes implicated in energy homeostasis, suggesting that the improvement in energy balance and BAT function of the DBKO mice is mediated, at least in part, through the transcription coactivator Med1.


1989 ◽  
Vol 67 (4) ◽  
pp. 394-401 ◽  
Author(s):  
Jean Himms-Hagen

Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in ail organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF)). At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT)) balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.Key words: thermogenesis, brown adipose tissue, energy balance, obesity, cold, thermoregulation, diet.


2017 ◽  
Vol 313 (6) ◽  
pp. E731-E736 ◽  
Author(s):  
Wenjuan Wang ◽  
Xiangzhi Meng ◽  
Chun Yang ◽  
Dongliang Fang ◽  
Xuemeng Wang ◽  
...  

Loss of body weight and fat mass is one of the nonmotor symptoms of Parkinson’s disease (PD). Weight loss is due primarily to reduced energy intake and increased energy expenditure. Whereas inadequate energy intake in PD patients is caused mainly by appetite loss and impaired gastrointestinal absorption, the underlying mechanisms for increased energy expenditure remain largely unknown. Brown adipose tissue (BAT), a key thermogenic tissue in humans and other mammals, plays an important role in thermoregulation and energy metabolism; however, it has not been tested whether BAT is involved in the negative energy balance in PD. Here, using the 6-hydroxydopamine (6-OHDA) rat model of PD, we found that the activity of sympathetic nerve (SN), the expression of Ucp1 in BAT, and thermogenesis were increased in PD rats. BAT sympathetic denervation blocked sympathetic activity and decreased UCP1 expression in BAT and attenuated the loss of body weight in PD rats. Interestingly, sympathetic denervation of BAT was associated with decreased sympathetic tone and lipolysis in retroperitoneal and epididymal white adipose tissue. Our data suggeste that BAT-mediated thermogenesis may contribute to weight loss in PD.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 446 ◽  
Author(s):  
De Li ◽  
Yinxin Zhang ◽  
Li Xu ◽  
Linkang Zhou ◽  
Yue Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document