Effect of short-term fasting on the lipolytic response to theophylline

1991 ◽  
Vol 261 (4) ◽  
pp. E500-E504 ◽  
Author(s):  
E. J. Peters ◽  
S. Klein ◽  
R. R. Wolfe

We investigated the hypothesis that the increase in lipolysis that occurs in short-term (86-h) fasting is due to a decreased inhibitory influence of adenosine. In normal volunteers who fasted for 14 and 86 h, the response to adenosine receptor blockade was assessed by the infusion of theophylline at a rate sufficient to produce plasma concentrations (30 microM) that blocked adenosine receptors but that were well below the threshold for inhibition of phosphodiesterase. Lipolysis was assessed by determining the rate of appearance of glycerol using D-5-glycerol infusion. Fatty acid flux was also determined by means of [1-13C]palmitate infusion, and total fatty acid oxidation was determined by indirect calorimetry. There was a mild stimulatory effect of theophylline on lipolysis at 14 h. After the subjects fasted for 86 h, theophylline infusion caused a much greater increase in both lipolysis and fatty acid oxidation. These results suggest that the inhibitory effect of adenosine on lipolysis is increased during short-term fasting.

1995 ◽  
Vol 79 (2) ◽  
pp. 439-447 ◽  
Author(s):  
J. A. Kanaley ◽  
C. D. Mottram ◽  
P. D. Scanlon ◽  
M. D. Jensen

During running exercise above the lactate threshold (LT), it is unknown whether free fatty acid (FFA) mobilization can meet the energy demands for fatty acid oxidation. This study was performed to determine whether FFA availability is reduced during running exercise above compared with below the LT and to assess whether the level of endurance training influences FFA mobilization. Twelve marathon runners and 12 moderately trained runners ran at a workload that was either above or below their individual LT. Fatty acid oxidation (indirect calorimetry) and FFA release ([1–14C]palmitate) were measured at baseline, throughout exercise, and at recovery. The plasma FFA rate of appearance increased during exercise in both groups; running above or below the LT, but the total FFA availability for 30 min of exercise was greater (P < 0.01) in the below LT group (marathon, 23 +/- 2 mmol; moderate, 21 +/- 2 mmol) than in the above LT group (18 +/- 3 and 13 +/- 3 mmol, respectively). Total fatty acid oxidation (indirect calorimetry) greatly exceeded circulating FFA availability, regardless of training or exercise group (P < 0.01). No statistically significant exercise intensity or training differences in fatty acid oxidation were found (above LT: marathon, 71 +/- 12, moderate, 64 +/- 17 mmol/30 min; below LT: marathon 91 +/- 12, moderate, 60 +/- 5 mmol/30 min). In conclusion, during exercise above or below LT, circulating FFA cannot meet the oxidative needs and intramuscular triglyceride stores must be utilized. Further marathon training does not enhance effective adipose tissue lipolysis during exercise compared with moderate endurance training.


2020 ◽  
Author(s):  
E. Matthew Morris ◽  
Roberto D. Noland ◽  
Michael E. Ponte ◽  
Michelle L. Montonye ◽  
Julie A. Christianson ◽  
...  

AbstractCentral integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previous work described increased acute food intake following chemical reduction of hepatic fatty acid oxidation and ATP levels, which was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a liver-specific PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male mice have 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain and 35% greater positive energy balance compared to wildtype (WT) (p<0.05). The greater energy balance was associated with altered feeding behavior and lower activity energy expenditure during HFHS in LPGC1a males. Importantly, no differences in HFHS-induced weight gain or energy metabolism was observed between female WT and LPGC1a mice. WT and LPGC1a mice underwent sham or HBV to assess whether vagal signaling was involved in HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p<0.05) in male WT, but not LPGC1a mice. As above, sham LPGC1a males gain 70% more weight during short-term HFHS feeding than sham WT (p<0.05). These data demonstrate a sexspecific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need of more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.Key Points SummaryReduced liver PGC1a expression results in reduced mitochondrial fatty acid oxidation and respiratory capacity in male mice.Male mice with reduced liver PGC1a expression (LPGC1a) demonstrate greater short-term high-fat/high-sucrose diet-induced weight gain compared to wildtype.Greater positive energy balance during HFHS feeding in male LPGC1a mice is associated with altered food intake patterns and reduced activity energy expenditure.Female LPGC1a mice do not have differences in short-term HFHS-induced body weight gain or energy metabolism compared to wildtype.Disruption of vagal signaling through common hepatic branch vagotomy increases short-term HFHS-induced weight gain in male wildtype mice, but does not alter male LPGC1a weight gain.


1982 ◽  
Vol 206 (1) ◽  
pp. 53-59 ◽  
Author(s):  
F Bauché ◽  
D Sabourault ◽  
Y Giudicelli ◽  
J Nordmann ◽  
R Nordmann

The effects of 2-mercaptoacetate on the respiration rates induced by different substrates were studied in vitro in isolated liver mitochondria. With palmitoyl-L-carnitine or 2-oxoglutarate as the substrate, the ADP-stimulated respiration (State 3) was dose-dependently inhibited by 2-mercaptoacetate. with glutamate or succinate as the substrate. State-3 respiration was only slightly inhibited by 2-mercaptoacetate. In contrast, the oxidation rate of 3-hydroxybutyrate was competitively inhibited by 2-mercaptoacetate in both isolated mitochondria and submitochondrial particles. In uncoupled mitochondria and in mitochondria in which ATP- and GTP-dependent acyl-CoA biosynthesis was inhibited, the inhibitory effect of 2-mercaptoacetate on palmitoyl-L-carnitine oxidation was abolished; under the same conditions, however, inhibition of 3-hydroxybutyrate oxidation by 2-mercaptoacetate still persisted. These results led to the following conclusions: 2-mercaptoacetate itself enters the mitochondrial matrix, inhibits fatty acid oxidation through a mechanism requiring an energy-dependent activation of 2-mercaptoacetate and itself inhibits 3-hydroxybutyrate oxidation through a competitive inhibition of the membrane-bound 3-hydroxybutyrate dehydrogenase. This study also strongly suggests that the compound responsible for the inhibition of fatty acid oxidation is 2-mercaptoacetyl-CoA.


2011 ◽  
Vol 301 (4) ◽  
pp. G739-G747 ◽  
Author(s):  
Margaret S. Sozio ◽  
Changyue Lu ◽  
Yan Zeng ◽  
Suthat Liangpunsakul ◽  
David W. Crabb

AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to rely on the activated conformation of AMPK. AMPK inhibition of PPAR-α and -γ may allow for short-term processes to increase energy generation before the cells devote resources to increasing their capacity for fatty acid oxidation.


PEDIATRICS ◽  
2002 ◽  
Vol 110 (6) ◽  
pp. 1204-1211 ◽  
Author(s):  
D. A. Klose ◽  
S. Kolker ◽  
B. Heinrich ◽  
V. Prietsch ◽  
E. Mayatepek ◽  
...  

2007 ◽  
Vol 85 (5) ◽  
pp. 527-535 ◽  
Author(s):  
Arzu Onay-Besikci ◽  
Sahika Guner ◽  
Ebru Arioglu ◽  
Isil Ozakca ◽  
A. Tanju Ozcelikay ◽  
...  

Clinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats. Spontaneously beating hearts from male Sprague–Dawley rats were subjected to a 60-minute aerobic perfusion period with a recirculating Krebs–Henseleit solution containing 11 mmol/L glucose, 100 μU/mL insulin, and 0.8 mmol/L palmitate prebound to 3% bovine serum albumin (BSA). Mechanical function of the hearts, as cardiac output × heart rate (in (mL/min)·(beats/min)·10–2), was deteriorated in diabetic (73 ± 4) and TMZ-treated diabetic (61 ± 7) groups compared with control (119 ± 3) and TMZ-treated controls (131 ± 6). TMZ treatment increased coronary flow in TMZ-treated control (23 ± 1 mL/min) hearts compared with untreated controls (18 ± 1 mL/min). The mRNA expression of 3-ketoacyl-CoA thiolase (3-KAT) was increased in diabetic hearts. The inhibitory effect of TMZ on fatty acid oxidation was not detected at 0.8 mmol/L palmitate in the perfusate. Addition of 1 μmol/L TMZ 30 min into the perfusion did not affect fatty acid oxidation rates, cardiac work, or coronary flow. Our results suggest that higher expression of 3-KAT in diabetic rats might require increased concentrations of TMZ for the inhibitory effect on fatty acid oxidation. A detailed kinetic analysis of 3-KAT using different concentrations of fatty acid will determine the fatty acid inhibitory concentration of TMZ in diabetic state where plasma fatty acid levels are increased.


1982 ◽  
Vol 204 (3) ◽  
pp. 861-863 ◽  
Author(s):  
Susan C. Frost ◽  
Michael A. Wells

The hypoglycaemic agent 2-tetradecylglycidic acid (compound McN-3802) caused an increase in total liver carnitine content, this being due primarily to an increase in the free carnitine pool. In the neonatal animal, this may represent a mechanism to overcome the inhibitory effect of fatty acid oxidation by the drug.


1989 ◽  
Vol 264 (1) ◽  
pp. 107-113 ◽  
Author(s):  
M Guzmán ◽  
J Castro

Fatty acid metabolism was studied in periportal and perivenous hepatocytes isolated by the method of Chen & Katz [Biochem. J. (1988) 255, 99-104]. The rate of fatty acid synthesis and the activity of acetyl-CoA carboxylase were markedly enhanced in perivenous hepatocytes as compared with periportal cells. However, the response of these two parameters to short-term modulation by cellular effectors such as the hormones insulin and glucagon, the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and the xenobiotics ethanol and acetaldehyde was similar in the two zones of the liver. In addition, perivenous hepatocytes showed a higher capacity of esterification of exogenous fatty acids into both cellular and very-low-density-lipoprotein lipids. Nevertheless, no difference between the two cell sub-populations seemed to exist in relation to the secretion of very-low-density lipoproteins. On the other hand, the rate of fatty acid oxidation was increased in periportal cells. This could be accounted for by a higher activity of carnitine palmitoyltransferase I and a lower sensitivity of this enzyme to inhibition by malonyl-CoA in the periportal zone. No differences were observed between periportal and perivenous hepatocytes in relation to the short-term response of fatty acid oxidation and carnitine palmitoyltransferase I activity to the cellular modulators mentioned above. In conclusion, our results show that: (i) lipogenesis is achieved at higher rates in the perivenous zone of the liver, whereas the fatty-acid-oxidative process occurs with a certain preference in the periportal area of this organ; (ii) the short-term response of the different fatty-acid-metabolizing pathways to cellular effectors is quantitatively similar in the two zones of the liver.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2596
Author(s):  
E. Matthew Morris ◽  
Roberto D. Noland ◽  
Michael E. Ponte ◽  
Michelle L. Montonye ◽  
Julie A. Christianson ◽  
...  

The central integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previously, increased acute food intake following the chemical reduction of hepatic fatty acid oxidation and ATP levels was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a hepatocyte PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male, but not female, mice had a 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain compared to wildtype (WT) mice (p < 0.05). The greater weight gain was associated with altered feeding behavior and lower activity energy expenditure during the HFHS diet in LPGC1a males. WT and LPGC1a mice underwent sham surgery or HBV to assess whether vagal signaling was involved in the HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p < 0.05) in male WT mice, but not LPGC1a mice. These data demonstrate a sex-specific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need for a more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.


Sign in / Sign up

Export Citation Format

Share Document