Osmotic threshold and sensitivity for vasopressin release and Fos expression by hypertonic NaCl in ovine fetus

2000 ◽  
Vol 279 (6) ◽  
pp. E1207-E1215 ◽  
Author(s):  
Zhice Xu ◽  
Calvario Glenda ◽  
Linda Day ◽  
Jiaming Yao ◽  
Michael G. Ross

In adults, hyperosmolality stimulates central osmoreceptors, resulting in arginine vasopressin (AVP) secretion. Near-term fetal sheep have also developed mechanisms to respond to intravascular hypertonicity with stimulation of in utero AVP release. However, prior studies demonstrating fetal AVP secretion have utilized plasma tonicity changes greater than those required for adult osmotically induced AVP stimulation. We sought to examine near-term fetal plasma osmolality threshold and sensitivity for stimulation of AVP secretion and to correlate plasma hormone levels with central neuronal responsiveness. Chronically instrumented ovine fetuses (130 ± 2 days) and maternal ewes simultaneously received either isotonic or hypertonic intravascular NaCl infusions. Maternal and fetal plasma AVP and angiotensin II (ANG II) levels were examined at progressively increasing levels of plasma hypertonicity. Intravenous hypertonic NaCl gradually elevated plasma osmolality and sodium levels. Both maternal and fetal plasma AVP increased during hypertonicity, whereas ANG II levels were not changed. Maternal AVP levels significantly increased with a 3% increase in plasma osmolality, whereas fetal plasma AVP significantly increased only at higher plasma osmolality levels (over 6%). Thus the slope of the regression of AVP vs. osmolality was greater for ewes than for fetuses (0.232 vs. 0.064), despite similar maternal and fetal plasma osmolality thresholds for AVP secretion (302 vs. 304 mosmol/kg). Hyperosmolality induced Fos immunoreactivity (FOS-ir) in the circumventricular organs of the fetal brain. FOS-ir was also demonstrated in the fetal supraoptic and paraventricular nuclei (SON and PVN), and double labeling demonstrated that AVP-containing neurons in the SON and PVN expressed Fos in response to intravenous NaCl. These results demonstrate that, in the ovine fetus at 130 days of gestation, neuroendocrine responses to cellular dehydration are functional, although they evidence a relatively reduced sensitivity for AVP secretion compared with the adult.

2003 ◽  
Vol 285 (6) ◽  
pp. E1216-E1222 ◽  
Author(s):  
Lijun Shi ◽  
Fang Hu ◽  
Paul Morrissey ◽  
Jiaming Yao ◽  
Zhice Xu

The effect of intravenous angiotensin II (ANG II) on fetal brain c- fos expression and arginine vasopressin (AVP) release was studied in the near-term ovine fetus. Fetuses with chronically implanted catheters received an intravenous infusion of ANG II or saline. Fetal plasma AVP concentrations were significantly increased after the peripheral administration of ANG II, with peak levels (3-fold) at 30 min after the intravenous infusion. There was no change in fetal plasma osmolality, sodium, and hematocrit levels between the control and experimental groups or between the periods before and after the infusion of ANG II. Intravenous ANG II administration induced Fos immunoreactivity (Fos-IR) in the circumventricular organs and the median preoptic nucleus of the fetal brain. Fos-IR was also demonstrated in the fetal supraoptic nuclei (SON). Double labeling demonstrated that the AVP-containing neurons in the SON were expressing c- fos in response to intravenous ANG II. These results indicate that the peripheral ANG II in the fetus may play a significant role in stimulating the central hypothalamic-neurohypophysial system during late gestation. It supports the hypothesis that circulating ANG II may act at the fetal AVP neurons in the hypothalamus in body fluid balance via the circumventricular organs, which are situated outside the blood-brain barrier, and the central neural pathway between these two brain structures has been relatively established in utero, at least at near-term.


2010 ◽  
Vol 298 (6) ◽  
pp. E1274-E1282 ◽  
Author(s):  
Lijun Shi ◽  
Caiping Mao ◽  
Fanxing Zeng ◽  
Jianquan Hou ◽  
Hong Zhang ◽  
...  

Angiotensin (Ang) II plays a critical role in cardiovascular homeostasis and neuroendocrine regulation. Little is known about whether central angiotensin-converting enzyme (ACE) is functional in the fetal brain. We investigated cardiovascular and neuroendocrinological responses to intracerebroventricular (icv) application of Ang I in the chronically prepared near-term ovine fetus in utero and examined the action sites marked by c-fos expression in the fetal hypothalamus. ACE mRNA was detected in the specific central areas. Intracerebroventricular Ang I significantly increased fetal blood pressure and c-fos expression in the supraoptic nuclei (SON) and the paraventricular nuclei (PVN) in the hypothalamus, accompanied by an increase of fetal plasma arginine vasopressin (AVP). Double labeling demonstrated that AVP neurons in the fetal SON and PVN were expressing c-fos. Captopril, an inhibitor of ACE, significantly suppressed fetal pressor responses and plasma AVP. Double labeling experiments showed colocalization of AT1 receptor (AT1R) and c-fos expression in both SON and PVN following icv Ang I. The results indicate that central endogenous ACE has been functional at least at the last third of gestation and the endogenous brain renin-angiotensin system-mediated pressor responses and AVP release via AT1Rs by acting at the sites consistent with the cardiovascular network in the hypothalamus.


2002 ◽  
Vol 282 (6) ◽  
pp. R1628-R1635 ◽  
Author(s):  
Richard A. Ehrhardt ◽  
Alan W. Bell ◽  
Yves R. Boisclair

To better understand the biology of leptin during prenatal life, the developmental and spatial regulation of leptin was studied in ovine fetuses. Fetal plasma leptin increased steadily between days 40 and 143 postcoitus (PC), but it was unrelated to fetal weight or placental weight at day 135 PC. Leptin gene expression was detected in fetal brain and liver during most of gestation and in fetal adipose tissue after day 100 PC. At day 130 PC, expression in fetal perirenal adipose tissue was ∼10% of maternal expression. In contrast, leptin gene expression was never detected in the placenta and other uteroplacental tissues. When ewes were fed 55% of requirements between days 122 and 135 PC, fetal plasma leptin remained constant despite acute reduction in maternal concentration. We conclude that fetal plasma leptin originates mostly from nonadipose tissue in early pregnancy and, in addition, from fetal adipose tissue near term. The role of fetal plasma leptin remains uncertain given the lack of nutritional regulation and association with fetal growth.


1994 ◽  
Vol 266 (1) ◽  
pp. R118-R124 ◽  
Author(s):  
C. L. Stebbins ◽  
J. D. Symons ◽  
M. D. McKirnan ◽  
F. F. Hwang

This study examined the effect of dynamic exercise on vasopressin release in the miniswine and factors that may elicit this response (n = 15). Thus lysine vasopressin (LVP), the catecholamines epinephrine and norepinephrine (EPI and NE), plasma renin activity (PRA), and plasma volume, Na+, and osmolality were measured before and during treadmill running at work intensities of 60, 80, and 100% of each swine's maximal heart rate reserve (HRR). LVP increased in a progressive manner similar to that of humans, ranging from 5.9 +/- 0.4 pg/ml before exercise to 30.1 +/- 4.5 pg/ml during maximal exercise. EPI, NE, and PRA [an index of angiotensin II (ANG II) activity] demonstrated a pattern of response comparable to LVP. Although these hormones can influence the release of LVP, only PRA displayed a strong correlation with LVP (r = 0.84). When ANG II synthesis was blocked (captopril, 1-3 mg/kg, intra-atrial injection) during exercise (80% HRR), plasma LVP was reduced from 9.9 +/- 0.6 to 7.5 +/- 0.6 pg/ml (P < 0.05). In addition, moderate-to-strong correlations were found between plasma concentrations of LVP and plasma osmolality (r = 0.79) and body temperature (r = 0.78). Plasma LVP also correlated with decreases in plasma volume (r = 0.84). These data suggest that the miniswine model is a good one for studying vasopressin effects during exercise and that ANG II appears to be a particularly strong stimulus for the release of this hormone.


2001 ◽  
Vol 280 (6) ◽  
pp. R1837-R1843 ◽  
Author(s):  
Zhice Xu ◽  
Calvario Glenda ◽  
Linda Day ◽  
Jiaming Yao ◽  
Michael G. Ross

The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 ± 2 days) received injection of ANG II (1.5 μg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 ± 0.2 to 4.5 ± 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c- fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.


1977 ◽  
Vol 43 (4) ◽  
pp. 747-749 ◽  
Author(s):  
R. M. Abrams ◽  
J. F. Clapp ◽  
M. Notelovitz ◽  
T. Tyler ◽  
S. Cassin

Thermojunctions were implanted in the brains of 10 near term fetal sheep in utero under halothane anesthesia. Brief total occlusion of fetal brachiocephalic artery was followed immediately by an increase in brain temperature (mean +/- SE) of 0.130 +/- 0.014 degrees C-min-1. Occlusion of main pulmonary artery and ascending aorta, simultaneously, led to a brain temperature increase of 0.144 +/- 0.018 degrees C-min-1. Specific heat of three fetal brains was determined to be 0.898 +/- 0.014 cal-g-1. degrees C-1 or 3.76 +/- 0.059 J-g-1. Rate of fetal brain heat production, computed as the product of the higher rate of temperature change and brain specific heat, was 0.129 +/- 0.014 cal-g-1-min-1 or 9.00 +/- 0.98 mW-g-1.


1997 ◽  
Vol 9 (8) ◽  
pp. 767 ◽  
Author(s):  
Kelly J. Crossley ◽  
Marcus B. Nicol ◽  
Jonathan J. Hirst ◽  
David W. Walker ◽  
Geoffrey D. Thorburn†

The high rate of progesterone synthesis by the placenta in late gestation exposes the ovine fetus to high concentrations of progesterone and its metabolites that may affect activity of the fetal brain. The aim of this study was to determine the effect of inhibiting maternal progesterone synthesis on sleep–wake activity in fetal sheep. Fetal and maternal vascular catheters, a fetal tracheal catheter, and electrodes for recording fetal electrocortical (ECoG), electro-ocular (EOG) and nuchal muscle electromyographic (EMG) activity were implanted. At 128–131 days gestation, progesterone production was inhibited by an injection of trilostane (50 mg), a 3β-hydroxysteroid dehydrogenase inhibitor. Vehicle solution or progesterone (3 mg h -1 ) was then infused into the ewe between 6 and 12 h after the trilostane treatment. Maternal progesterone concentrations were significantly reduced from 1–24 h after trilostane treatment (P < 0·05) when followed by vehicle infusion. Fetal breathing movements (FBM), EOG, nuchal muscle EMG, and behavioural arousal increased 12 h after trilostane treatment (P < 0 · 05). In contrast, there was no change in fetal arousal, EOG, EMG or FBM activities when progesterone was infused after the trilostane treatment. These findings show that progesterone can influence fetal behaviour, and indicates that normal progesterone production tonically suppresses arousal, or wakefulness in the fetus.


1994 ◽  
Vol 76 (3) ◽  
pp. 1340-1345 ◽  
Author(s):  
M. G. Ross ◽  
L. K. Kullama ◽  
A. Ogundipe ◽  
K. Chan ◽  
M. G. Ervin

In the late-gestation ovine fetus, spontaneous swallowing occurs primarily during fetal low-voltage electrocortical (ECoG) activity in association with fetal breathing movements. Fetal swallowing activity may be stimulated in response to systemic or carotid plasma hyperosmolality, although not to increased plasma angiotensin II (ANG II) levels. In view of the potent dipsogenic effects of central, but not peripheral, ANG II in adult sheep, the present study investigated the effect of intracerebroventricular (ICV) ANG II on fetal swallowing activity. Six ovine fetuses (127 +/- 1 days) were chronically prepared with electromyogram and cortical electrodes and with vascular and lateral ventricle catheters. After a 2-h control period, fetuses received ICV injections of artificial cerebrospinal fluid and increasing concentrations of ANG II (0.1, 1.0, 10, 100, and 500 ng/kg). Fetal ECoG activity did not change, although fetal swallowing activity significantly increased in response to the 100- and 500- ng/kg ANG II doses (1.20 +/- 0.14 to 3.34 +/- 0.59 and 3.46 +/- 0.81 swallows/min of low-voltage ECoG, respectively). In response to the highest ANG II dose, fetal plasma arginine vasopressin levels significantly increased (5.7 +/- 1.2 to 17.2 +/- 4.6 pg/ml). ICV ANG II stimulation of fetal swallowing and arginine vasopressin secretion demonstrates that central ANG II dipsogenic mechanisms are intact by 0.9 of ovine gestation.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4128-4136 ◽  
Author(s):  
Jason Gersting ◽  
Christine E. Schaub ◽  
Maureen Keller-Wood ◽  
Charles E. Wood

Maturation of the fetal hypothalamus-pituitary-adrenal axis is critical for the timely somatic development of the fetus and readiness for birth. Recently, we proposed that prostaglandin generation within the fetal central nervous system is critical for the modulation of hypotension-induced fetal ACTH secretion. The present study was designed to test the hypothesis that the preparturient increase in fetal ACTH secretion is dependent upon fetal central nervous system prostaglandin synthesis mediated by the activity of prostaglandin endoperoxide synthase (PGHS)-2 (cyclooxygenase-2) in the fetal brain. We performed two studies in chronically catheterized fetal sheep. In the first study, we infused nimesulide or vehicle intracerebroventricularly (icv) into singleton fetal sheep and collected blood samples until spontaneous parturition. Nimesulide significantly delayed parturition, and inhibited fetal ACTH and proopiomelanocortin secretion but did not prevent the preparturient increase in fetal plasma cortisol concentration. In the second study, we used twin fetuses. One fetus received intracerebroventricular nimesulide and the other intracerebroventricular vehicle. Nimesulide reduced brain tissue concentrations of prostaglandin estradiol, while not affecting plasma prostaglandin E2 concentrations, demonstrating an action restricted to the fetal brain. Nimesulide reduced PGHS-2 mRNA and increased PGHS-2 protein, while not altering PGHS-1 mRNA or protein in most brain regions, suggesting an effect of the inhibitor on PGHS-2 turnover and relative specificity for PGHS-2 in vivo. We conclude that the preparturient increase in fetal ACTH and proopiomelanocortin is dependent upon the activity of PGHS-2 in the fetal brain. However, we also conclude that the timing of parturition is not solely dependent upon ACTH in this species.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2665-2673 ◽  
Author(s):  
M. Elizabeth Bell ◽  
Thomas J. McDonald ◽  
Dean A. Myers

Abstract The hypothalamic-pituitary-adrenocortical axis plays an essential role in the maturation of fetal organs and, in sheep, birth. Lesioning the paraventricular nucleus (PVN) in fetal sheep prevents adrenocortical maturation and parturition without altering plasma immunoreactive ACTH concentrations. The purpose of this study was to determine the effect of PVN lesion on anterior pituitary processing of proopiomelanocortin (POMC) to ACTH, plasma concentrations of ACTH and ACTH precursors (POMC; 22-kDa proACTH), and expression of subtilisin-like prohormone convertase 3 (SPC3) in corticotropes in fetal sheep. PVN lesion did not affect anterior pituitary POMC and 22-kDa proACTH levels, whereas ACTH was significantly affected. The ACTH precursor (POMC plus 22-kDa proACTH) to ACTH ratio in the anterior pituitary was significantly increased after PVN lesion. Post-PVN lesion, fetal plasma ACTH1–39, was below the limit of detection, whereas ACTH precursors (POMC plus 22-kDa proACTH) were not affected. In the inferior region of the anterior pituitary, 40–50% of corticotropes had detectable SPC3 hybridization signal, and PVN lesion did not change the extent of colocalization of POMC and SPC3, or SPC3 mRNA levels within corticotropes. Neither the percent of corticotropes in the superior region containing SPC3 hybridization (7–12%) or hybridization signal strength was altered in response to PVN lesion. In conclusion, the fetal PVN is necessary for sustaining adequate anterior pituitary processing of POMC to ACTH and ACTH release needed for maturing the adrenal cortex in the sheep fetus.


Sign in / Sign up

Export Citation Format

Share Document