scholarly journals RANTES release by human adipose tissue in vivo and evidence for depot-specific differences

2009 ◽  
Vol 296 (6) ◽  
pp. E1262-E1268 ◽  
Author(s):  
Rana Madani ◽  
Kalypso Karastergiou ◽  
Nicola C. Ogston ◽  
Nazar Miheisi ◽  
Rahul Bhome ◽  
...  

Obesity is associated with elevated inflammatory signals from various adipose tissue depots. This study aimed to evaluate release of regulated on activation, normal T cell expressed and secreted (RANTES) by human adipose tissue in vivo and ex vivo, in reference to monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) release. Arteriovenous differences of RANTES, MCP-1, and IL-6 were studied in vivo across the abdominal subcutaneous adipose tissue in healthy Caucasian subjects with a wide range of adiposity. Systemic levels and ex vivo RANTES release were studied in abdominal subcutaneous, gastric fat pad, and omental adipose tissue from morbidly obese bariatric surgery patients and in thoracic subcutaneous and epicardial adipose tissue from cardiac surgery patients without coronary artery disease. Arteriovenous studies confirmed in vivo RANTES and IL-6 release in adipose tissue of lean and obese subjects and release of MCP-1 in obesity. However, in vivo release of MCP-1 and RANTES, but not IL-6, was lower than circulating levels. Ex vivo release of RANTES was greater from the gastric fat pad compared with omental ( P = 0.01) and subcutaneous ( P = 0.001) tissue. Epicardial adipose tissue released less RANTES than thoracic subcutaneous adipose tissue in lean ( P = 0.04) but not obese subjects. Indexes of obesity correlated with epicardial RANTES but not with systemic RANTES or its release from other depots. In conclusion, RANTES is released by human subcutaneous adipose tissue in vivo and in varying amounts by other depots ex vivo. While it appears unlikely that the adipose organ contributes significantly to circulating levels, local implications of this chemokine deserve further investigation.

2004 ◽  
Vol 286 (1) ◽  
pp. E8-E13 ◽  
Author(s):  
Jens M. Bruun ◽  
Aina S. Lihn ◽  
Atul K. Madan ◽  
Steen B. Pedersen ◽  
Kirsten M. Schiøtt ◽  
...  

IL-8 is released from human adipose tissue. Circulating IL-8 is increased in obese compared with lean subjects and is associated with measures of insulin resistance, development of atherosclerosis, and cardiovascular disease. We studied 1) the production and release of IL-8 in vitro from paired samples of subcutaneous (SAT) and visceral (VAT) adipose tissue and 2) the production of IL-8 from whole adipose tissue, isolated adipocytes, and nonfat cells of adipose tissue. IL-8 release from VAT was fourfold higher than from SAT ( P < 0.05), and IL-8 mRNA was twofold higher in VAT compared with SAT ( P < 0.01). Dexamethasone (50 nM) attenuated IL-8 production by 50% ( P < 0.05), and IL-1β (2 μg/l) increased IL-8 production up to 15-fold ( P < 0.001). IL-8 release from whole SAT explants correlated with body mass index (BMI; r = 0.78; P < 0.001), as did IL-8 release from nonfat cells ( r = 0.79; P < 0.001). However, no correlation was found between IL-8 release from the fraction of isolated adipocytes and BMI ( r = 0.01). In conclusion, we demonstrated an increased release of IL-8 from VAT compared with SAT. Furthermore, our data suggest that the observed elevation in circulating levels of IL-8 in obese subjects is due primarily to the release of IL-8 from nonfat cells from adipose tissue. The high levels of IL-8 release from human adipose tissue and accumulation of this tissue in obese subjects may account for some of the increase in circulating IL-8 observed in obesity.


2002 ◽  
Vol 301 (1) ◽  
pp. 229-233 ◽  
Author(s):  
M. Flechtner-Mors ◽  
C. P. Jenkinson ◽  
A. Alt ◽  
G. Adler ◽  
H. H. Ditschuneit

2002 ◽  
Vol 92 (3) ◽  
pp. 1310-1316 ◽  
Author(s):  
Kai Henrik Wiborg Lange ◽  
Jeanne Lorentsen ◽  
Fredrik Isaksson ◽  
Lene Simonsen ◽  
Jens Bülow ◽  
...  

Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 ± 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O2 uptake. Calculated and measured subcutaneous abdominal adipose tissue venous glycerol concentrations increased substantially from rest to exercise but were similar both at rest and during later stages of exercise. In contrast, during the initial ∼40 min of exercise, calculated glycerol concentration was significantly lower (∼40%) than measured adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and continuous prolonged exercise. However, during shorter periods of exercise (<40 min), the results from the two techniques may differ quantitatively in the studied subjects. Caution should, therefore, be taken when lipolysis is evaluated, based on results obtained by the two techniques under non-steady-state conditions.


Diabetes Care ◽  
1997 ◽  
Vol 20 (7) ◽  
pp. 1114-1121 ◽  
Author(s):  
Z. Trajanoski ◽  
G. A. Brunner ◽  
L. Schaupp ◽  
M. Ellmerer ◽  
P. Wach ◽  
...  

2009 ◽  
Vol 155 (1-3) ◽  
pp. 156-162 ◽  
Author(s):  
Ivana Dostálová ◽  
Petra Kaválková ◽  
Denisa Haluzíková ◽  
Jitka Housová ◽  
Martin Matoulek ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
John N. Fain

This paper considers the role of putative adipokines that might be involved in the enhanced inflammatory response of human adipose tissue seen in obesity. Inflammatory adipokines [IL-6, IL-10, ACE, TGFβ1, TNFα, IL-1β, PAI-1, and IL-8] plus one anti-inflammatory [IL-10] adipokine were identified whose circulating levels as well as in vitro release by fat are enhanced in obesity and are primarily released by the nonfat cells of human adipose tissue. In contrast, the circulating levels of leptin and FABP-4 are also enhanced in obesity and they are primarily released by fat cells of human adipose tissue. The relative expression of adipokines and other proteins in human omental as compared to subcutaneous adipose tissue as well as their expression in the nonfat as compared to the fat cells of human omental adipose tissue is also reviewed. The conclusion is that the release of many inflammatory adipokines by adipose tissue is enhanced in obese humans.


Obesity ◽  
2013 ◽  
Vol 21 (2) ◽  
pp. 413-418 ◽  
Author(s):  
Vendela Roos ◽  
Monika Rönn ◽  
Samira Salihovic ◽  
Lars Lind ◽  
Bert van Bavel ◽  
...  

2018 ◽  
Vol 50 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Martin Gajdošík ◽  
Lukas Hingerl ◽  
Antonín Škoch ◽  
Angelika Freudenthaler ◽  
Patrik Krumpolec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document