Lipolysis in human adipose tissue during exercise: comparison of microdialysis and a-v measurements

2002 ◽  
Vol 92 (3) ◽  
pp. 1310-1316 ◽  
Author(s):  
Kai Henrik Wiborg Lange ◽  
Jeanne Lorentsen ◽  
Fredrik Isaksson ◽  
Lene Simonsen ◽  
Jens Bülow ◽  
...  

Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 ± 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O2 uptake. Calculated and measured subcutaneous abdominal adipose tissue venous glycerol concentrations increased substantially from rest to exercise but were similar both at rest and during later stages of exercise. In contrast, during the initial ∼40 min of exercise, calculated glycerol concentration was significantly lower (∼40%) than measured adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and continuous prolonged exercise. However, during shorter periods of exercise (<40 min), the results from the two techniques may differ quantitatively in the studied subjects. Caution should, therefore, be taken when lipolysis is evaluated, based on results obtained by the two techniques under non-steady-state conditions.

2009 ◽  
Vol 296 (6) ◽  
pp. E1262-E1268 ◽  
Author(s):  
Rana Madani ◽  
Kalypso Karastergiou ◽  
Nicola C. Ogston ◽  
Nazar Miheisi ◽  
Rahul Bhome ◽  
...  

Obesity is associated with elevated inflammatory signals from various adipose tissue depots. This study aimed to evaluate release of regulated on activation, normal T cell expressed and secreted (RANTES) by human adipose tissue in vivo and ex vivo, in reference to monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) release. Arteriovenous differences of RANTES, MCP-1, and IL-6 were studied in vivo across the abdominal subcutaneous adipose tissue in healthy Caucasian subjects with a wide range of adiposity. Systemic levels and ex vivo RANTES release were studied in abdominal subcutaneous, gastric fat pad, and omental adipose tissue from morbidly obese bariatric surgery patients and in thoracic subcutaneous and epicardial adipose tissue from cardiac surgery patients without coronary artery disease. Arteriovenous studies confirmed in vivo RANTES and IL-6 release in adipose tissue of lean and obese subjects and release of MCP-1 in obesity. However, in vivo release of MCP-1 and RANTES, but not IL-6, was lower than circulating levels. Ex vivo release of RANTES was greater from the gastric fat pad compared with omental ( P = 0.01) and subcutaneous ( P = 0.001) tissue. Epicardial adipose tissue released less RANTES than thoracic subcutaneous adipose tissue in lean ( P = 0.04) but not obese subjects. Indexes of obesity correlated with epicardial RANTES but not with systemic RANTES or its release from other depots. In conclusion, RANTES is released by human subcutaneous adipose tissue in vivo and in varying amounts by other depots ex vivo. While it appears unlikely that the adipose organ contributes significantly to circulating levels, local implications of this chemokine deserve further investigation.


2015 ◽  
Vol 308 (12) ◽  
pp. E1131-E1139 ◽  
Author(s):  
Joseph R. Pierce ◽  
Jill M. Maples ◽  
Robert C. Hickner

Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m2; n = 10) and obese (BMI: 34.7 ± 3.5 kg/m2; n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects ( P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects ( P = 0.02) and was correlated with SCAT lipolysis ( r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese ( P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean ( P = 0.04) but suppressed lipolysis in obese ( P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown.


2001 ◽  
Vol 280 (1) ◽  
pp. R166-R173 ◽  
Author(s):  
Fabrice Marion-Latard ◽  
Isabelle De Glisezinski ◽  
Francois Crampes ◽  
Michel Berlan ◽  
Jean Galitzky ◽  
...  

This study was designed to assess whether physiological activation of the sympathetic nervous system induced by exercise changes adipose tissue responsiveness to catecholamines in humans. Lipid mobilization in abdominal subcutaneous adipose tissue was studied with the use of a microdialysis method in 11 nontrained men (age: 22.3 ± 1.5 yr; body mass index: 23.0 ± 1.6). Adipose tissue adrenergic sensitivity was explored with norepinephrine, dobutamine (β1-agonist), or terbutaline (β2-agonist) perfused during 30 min through probes before and after 60-min exercise (50% of the maximal aerobic power). The increase in extracellular glycerol concentration during infusion was significantly lower after the exercise when compared with the increase observed before the exercise ( P < 0.05, P < 0.02, and P < 0.01, respectively, for norepinephrine, dobutamine, and terbutaline). In a control experiment realized without exercise, no difference in norepinephrine-induced glycerol increase between the two infusions was observed. To assess the involvement of catecholamines in the blunted β-adrenergic-induced lipolytic response after exercise, adipose tissue adrenergic sensitivity was explored with two 60-min infusions of norepinephrine or epinephrine separated by a 60-min interval. With both catecholamines, the increase in glycerol was significantly lower during the second infusion ( P < 0.05). The findings suggest that aerobic exercise, which increased adrenergic activity, induces a desensitization in β1- and β2-adrenergic lipolytic pathways in human subcutaneous adipose tissue.


Author(s):  
Antonio Paoli ◽  
Andrea Casolo ◽  
Matteo Saoncella ◽  
Carlo Bertaggia ◽  
Marco Fantin ◽  
...  

Accumulation of adipose tissue in specific body areas is related to many physiological and hormonal variables. Spot reduction (SR) is a training protocol aimed to stimulate lipolysis locally, even though this training protocol has not been extensively studied in recent years. Thus, the present study sought to investigate the effect of a circuit-training SR on subcutaneous adipose tissue in healthy adults. Methods: Fourteen volunteers were randomly assigned to spot reduction (SR) or to a traditional resistance training (RT) protocol. Body composition via bioimpedance analysis (BIA) and subcutaneous adipose tissue via skinfold and ultrasound were measured before and after eight weeks of training. Results: SR significantly reduced body mass (p < 0.05) and subcutaneous abdominal adipose tissue (p < 0.05). Conclusions: circuit-training SR may be an efficient strategy to reduce in a localized manner abdominal subcutaneous fat tissue depot.


2009 ◽  
Vol 155 (1-3) ◽  
pp. 156-162 ◽  
Author(s):  
Ivana Dostálová ◽  
Petra Kaválková ◽  
Denisa Haluzíková ◽  
Jitka Housová ◽  
Martin Matoulek ◽  
...  

2018 ◽  
Vol 50 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Martin Gajdošík ◽  
Lukas Hingerl ◽  
Antonín Škoch ◽  
Angelika Freudenthaler ◽  
Patrik Krumpolec ◽  
...  

1980 ◽  
Vol 59 (3) ◽  
pp. 199-201 ◽  
Author(s):  
P. Arner ◽  
J. Östman

1. The activation of lipolysis on incubation of human subcutaneous adipose tissue was examined in terms of the relationship between the release of glycerol and the concentration of tissue cyclic AMP. 2. A strong positive correlation was obtained between the maximum concentration of cyclic AMP and the rate of glycerol release in the presence of noradrenaline (r = 0.9), whereas, in the basal state, these two parameters were only weakly correlated (r = 0.45). 3. It appears that the noradrenaline-induced rate of lipolysis depends upon the maximal concentration of cyclic AMP that is present in human adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document