Brain-Gut Communication: Vagovagal Reflexes Interconnect the Two "Brains"

Author(s):  
Terry L. Powley

The gastrointestinal tract has its own "brain", the enteric nervous system or ENS, that executes routine housekeeping functions of digestion. The dorsal vagal complex in the CNS brainstem, however, organizes vagovagal reflexes and establishes interconnections between the entire neuroaxis of the CNS and the gut. Thus, the dorsal vagal complex links the "ENS brain" to the "CNS brain". This brain-gut connectome provides reflex adjustments that optimize digestion and assimilation of nutrients and fluid. Vagovagal circuitry also generates the plasticity and adaptability needed to coordinate among organs, to maintain homeostasis, and to react to environmental situations. Arguably, this dynamic flexibility provided by the connectome may, in some circumstances, lead to or complicate maladaptive disorders.

2018 ◽  
Vol 3 (2) ◽  
pp. 93-99
Author(s):  
Florian Obermayr ◽  
Guido Seitz

AbstractTherapeutic options to treat neurogenic motility disorders of the gastrointestinal tract are usually limited to symptomatic treatment. The capacity of the enteric nervous system (ENS) to regenerate and the fact that progenitor cells of the enteric nervous system reside in the postnatal and adult gut led to the idea to develop cell-based strategies to treat ENS related disorders. This short review focuses on recent developments in cell-based ENS regeneration, discussing advantages and disadvantages of various cell sources, functional impact of transplanted cells and highlights the challenges of translation of small animal studies to human application.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 461 ◽  
Author(s):  
Sławomir Gonkowski ◽  
Magdalena Gajęcka ◽  
Krystyna Makowska

Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiying Shi ◽  
Chen Jiang ◽  
Hailing Yao ◽  
Yurui Zhang ◽  
Qin Zhang ◽  
...  

Abstract Background Diabetes can cause extensive enteric nervous system (ENS) injuries and gastrointestinal motility disorder. In developing possible treatments, researchers have engaged in tissue regeneration engineering with the very promising bone marrow-derived mesenchymal stem cells (BMSCs). However, BMSCs have poor homing ability to the targeted tissues after intravenous injection. Thus, we aimed to investigate whether enhancing the expression of E-selectin ligand on BMSCs could improve their homing ability and subsequently influence their role in ENS remodeling in diabetic mice. Methods First, we constructed the fucosylation modification of CD44 on BMSCs through a fucosyltransferase VII (FTVII) system to generate a Hematopoietic Cell E-/L-selectin Ligand (HCELL) property, a fucosylated sialyllactosaminyl glycovariant of CD44 that potently binds E-selectin. Next, FTVII-modified and unmodified BMSCs labeled with green fluorescent protein (GFP) were injected into diabetic mice through the tail vein to compare their homing ability to the gastrointestinal tract and their effect on ENS remodeling, respectively. A bioluminescent imaging system was used to evaluate the homing ability of GFP-labeled BMSCs with and without FTVII modification, to the gastrointestinal tract. Gastrointestinal motility was assessed by gastrointestinal transient time, defecation frequency, stool water content and colon strips contractility. Immunofluorescence staining and western blotting were used to assess the expression levels of protein gene product 9.5 (PGP9.5), glial fibrillary acidic protein (GFAP) and glial cell line-derived neurotrophic factor (GDNF). Results The FTVII-mediated α(1,3)-fucosylation modification of CD44 on BMSCs generated a HCELL property. Bioluminescent imaging assays showed that FTVII-modified BMSCs had enhanced homing ability to gastrointestinal tract, mainly to the colon, 24 h after injection through the tail vein. Compared with diabetic mice, FTVII-modified BMSCs significantly promoted the gastrointestinal motility and the ENS remodeling, including intestinal peristalsis (P < 0.05), increased feces excretion (P < 0.05) and the water content of the feces (P < 0.05), restored the spontaneous contraction of the colon (P < 0.05), and upregulated the protein expression levels of PGP9.5 (P < 0.01), GFAP (P < 0.001), and GDNF (P < 0.05), while unmodified BMSCs did not (P > 0.05). Conclusions CD44 fucosylation modification on murine BMSCs promotes homing ability to the gastrointestinal tract and ENS remodeling in diabetic mice.


2021 ◽  
Vol 9 (12) ◽  
pp. 3108-3112
Author(s):  
Neha Sajwan ◽  
Rajesh Kumar Sharma ◽  
Dinesh Chandra Sharma

Ayurveda is a science that has been around for thousands of years and has proven to be beneficial to humans. Ayurveda is based on the tridosha theory. Vata, one of three doshas, plays an essential and major part in both healthy and unhealthy conditions, according to acharya sushruta dosha, dhatu and mala maintain our body. There are five types of vata- prana, udan, samana, vyan and apaan vayu. Among these five doshas samana vayu is situated near jatharagni and circulate all over the GIT tract. It helps in the division of essence and waste products, as well as the movement of the gastrointestinal tract, by stimulating the agni. In the body, jatharagni takes the form of pachak pitta, one of the pitta subtypes. Agnimandhya is responsible for all diseases, as we all know. The fire is fueled by samana vayu, who keeps it balanced. As a result, samana vayu might be regarded to play a specialized role in digestion. All of the samana vayu's functions can be compared to the physiological functions of the enteric nervous system and the sympathetic and parasympathetic supply of the Autonomic nervous system to the gastrointestinal tract. In this article, an attempt is made to correlate the physiological activity of samana vayu with the enteric nervous system. Keywords: Samana vayu, Prana vayu, Apan vayu, Sacral Segment.


Sign in / Sign up

Export Citation Format

Share Document