scholarly journals Mycotoxins and the Enteric Nervous System

Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 461 ◽  
Author(s):  
Sławomir Gonkowski ◽  
Magdalena Gajęcka ◽  
Krystyna Makowska

Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2445
Author(s):  
Krystyna Makowska ◽  
Sławomir Gonkowski

Bisphenol A (BPA) is widely utilized in plastic production process all over the world. Previous studies have shown that BPA, with its similarity to estrogen, may negatively affect living organisms. It is acknowledged that BPA distorts the activity of multiple internal systems, including the nervous, reproductive, urinary, and endocrine systems. BPA also affects the gastrointestinal tract and enteric nervous system (ENS), which is placed throughout the wall from the esophagus to the rectum. Contrary to the intestine, the influence of BPA on the ENS in the stomach is still little known. This study, performed using the double immunofluorescence method, has revealed that BPA affects the number of nervous structures in the porcine gastric wall immunoreactive to vesicular acetylcholine transporter (VAChT, a marker of cholinergic neurons), substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL) and cocaine- and amphetamine-regulated transcript peptide (CART). The character and severity of noted alterations depended on the part of the ENS, the BPA dose, and the type of neuronal substance. Administration of BPA resulted in an increase in the number of nervous structures containing SP, GAL, and/or CART, and a decrease in the number of cholinergic neurons in all parts of the gastric wall. The number of VIP-positive nervous structures increased in the enteric myenteric ganglia, along with the muscular and mucosal layers, whilst it decreased in the submucous ganglia. The exact mechanism of noted changes was not absolutely obvious, but they were probably related to the neuroprotective and adaptive processes constituting the response to the impact of BPA.


2020 ◽  
Vol 77 (22) ◽  
pp. 4505-4522 ◽  
Author(s):  
Candice Fung ◽  
Pieter Vanden Berghe

Abstract The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut–brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.


2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 465
Author(s):  
Silvia Cerantola ◽  
Valentina Caputi ◽  
Gabriella Contarini ◽  
Maddalena Mereu ◽  
Antonella Bertazzo ◽  
...  

Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gastrointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by modulating extracellular dopamine in the central nervous system, this study evaluated the impact of DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous system (ENS). In DAT heterozygous (DAT+/−) and wild-type (DAT+/+) mice (14 ± 2 weeks) alterations in small intestinal contractility were evaluated by isometrical assessment of neuromuscular responses to receptor and non-receptor-mediated stimuli. Changes in ENS integrity were studied by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (). DAT genetic reduction resulted in a significant increase in dopamine-mediated effects, primarily via D1 receptor activation, as well as in reduced cholinergic response, sustained by tachykininergic and glutamatergic neurotransmission via NMDA receptors. These functional anomalies were associated to architectural changes in the neurochemical coding and S100β immunoreactivity in small intestine myenteric plexus. Our study provides evidence that genetic-driven DAT defective activity determines anomalies in ENS architecture and neurochemical coding together with ileal dysmotility, highlighting the involvement of dopaminergic system in gut disorders, often associated to neurological conditions.


1987 ◽  
Vol 119 (S140) ◽  
pp. 15-30 ◽  
Author(s):  
Henry R. Murkin ◽  
Bruce D.J. Batt

AbstractThis paper reviews the interactions of vertebrates and invertebrates in peatlands and marshes to assess current knowledge and future research needs. Living organisms may interact through a number of direct trophic and nutrient pathways and a variety of non-trophic, habitat-dependent relationships. Freshwater marshes and peatlands are dynamic aquatic environments and organisms that occupy these areas must be adapted to a wide range of environmental conditions. The avian community illustrates the main interactions of invertebrates and vertebrates in peatlands and marshes. Waterfowl, along with fish and furbearers, are the most economically important vertebrates using these habitats. Each of these groups has important trophic and habitat links to the invertebrates within wetlands.The most common interaction between vertebrates and invertebrates is the use of invertebrates as food by vertebrates. Few studies, however, have dealt with trophic dynamics or secondary production within wetlands. Waterfowl, fish, and many other wetland vertebrates, during all or part of their life cycles, regularly feed on invertebrates. Some invertebrates are vectors of disease and parasites to vertebrates. Vertebrates can directly affect the structural substrate that invertebrates depend on as habitat through consumption of macrophytes or through the use of living and dead plant material in the construction of houses and nests. Conversely, herbivorous invertebrates may directly affect the survival and distribution of macrophytes in wetlands. Macrophyte distribution, in turn, is an important factor in determining vertebrate use of wetlands. The general lack of both taxonomic and ecological information on invertebrates in wetlands is the main hindrance to future elucidation of vertebrate–invertebrate interactions in these environments. Development of invertebrate sampling techniques suitable for wetland habitats also is necessary. More specific research needs must be met to develop a better understanding of the structure and function of these dynamic systems.


Author(s):  
Hind Benammi ◽  
Omar El Hiba ◽  
Abdelmohcine Aimrane ◽  
Nadia Zouhairi ◽  
Hicham Chatoui ◽  
...  

Climate change has an important impact on the environment. As it degrades the quality of water, soil, and area, it also spreads the distribution of many toxic elements, specifically heavy metals and pesticides. The impact of climate change on contamination with heavy metals and pesticides has been well investigated and discussed. The influence of these elements on human health is obviously exacerbated following their extended distribution. Moreover, a wide range of health problems have been associated to such intoxication, among which impairment and dysfunction of the nervous system are prominent. In this chapter, the authors will shed light on two most common neurological diseases such as epilepsy and stroke affecting people worldwide arising from food and water contaminations, mainly with heavy metals and pesticides.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Emilie G. Jaroy ◽  
Lourdes Acosta-Jimenez ◽  
Ryo Hotta ◽  
Allan M. Goldstein ◽  
Ragnhild Emblem ◽  
...  

Abstract Hirschsprung disease is a neurocristopathy, characterized by aganglionosis in the distal bowel. It is caused by failure of the enteric nervous system progenitors to migrate, proliferate, and differentiate in the gut. Development of an enteric nervous system is a tightly regulated process. Both the neural crest cells and the surrounding environment are regulated by different genes, signaling pathways, and morphogens. For this process to be successful, the timing of gene expression is crucial. Hence, alterations in expression of genes specific for the enteric nervous system may contribute to the pathogenesis of Hirschsprung’s disease. Several epigenetic mechanisms contribute to regulate gene expression, such as modifications of DNA and RNA, histone modifications, and microRNAs. Here, we review the current knowledge of epigenetic and epitranscriptomic regulation in the development of the enteric nervous system and its potential significance for the pathogenesis of Hirschsprung’s disease. We also discuss possible future therapies and how targeting epigenetic and epitranscriptomic mechanisms may open new avenues for novel treatment.


2020 ◽  
Vol 9 (11) ◽  
pp. 3705
Author(s):  
Mauro Giuffrè ◽  
Rita Moretti ◽  
Giuseppina Campisciano ◽  
Alexandre Barcelos Morais da Silveira ◽  
Vincenzo Maria Monda ◽  
...  

Mammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons. Some pathogenic bacteria take advantage of the ENS to create a more suitable environment for their growth or to promote the effects of their toxins. In addition, some commensal bacteria can affect the central nervous system (CNS) by locally interacting with the ENS. From the current knowledge emerges an interesting field that may shape future concepts on the pathogen–host synergic interaction. The aim of this narrative review is to report the current findings regarding the inter-relationships between bacteria, viruses, and parasites and the ENS.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Bollaerts ◽  
Jessie Van houcke ◽  
Lien Andries ◽  
Lies De Groef ◽  
Lieve Moons

Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document