Mechanism of augmented duodenal HCO3−secretion after elevation of luminal CO2

2005 ◽  
Vol 288 (3) ◽  
pp. G557-G563 ◽  
Author(s):  
Osamu Furukawa ◽  
Masahiko Hirokawa ◽  
Lening Zhang ◽  
Tetsu Takeuchi ◽  
Luke C. Bi ◽  
...  

The proximal duodenum is exposed to extreme elevations of Pco2because of the continuous mixture of secreted HCO3−with gastric acid. These elevations (up to 80 kPa) are likely to place the mucosal cells under severe acid stress. Furthermore, we hypothesized that, unlike most other cells, the principal source of CO2for duodenal epithelial cells is from the lumen. We hence examined the effect of elevated luminal Pco2on duodenal HCO3−secretion (DBS) in the rat. DBS was measured by the pH-stat method. For CO2challenge, the duodenum was superfused with a high Pco2solution. Intracellular pH (pHi) of duodenal epithelial cells was measured by ratio microfluorometry. CO2challenge, but not isohydric solutions, strongly increased DBS to approximately two times basal for up to 1 h. Preperfusion of the membrane-permeant carbonic anhydrase inhibitor methazolamide, or continuous exposure with indomethacin, fully inhibited CO2-augmented DBS. Dimethyl amiloride (0.1 mM), an inhibitor of the basolateral sodium-hydrogen exchanger 1, also inhibited CO2-augumented DBS, although S-3226, a specific inhibitor of apical sodium-hydrogen exchanger 3, did not. DIDS, an inhibitor of basolateral sodium-HCO3−cotransporter, also inhibited CO2-augemented DBS, as did the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid. CO2decreased epithelial cell pHi, followed by an overshoot after removal of the CO2solution. We conclude that luminal CO2diffused in the duodenal epithelial cells and was converted to H+and HCO3−by carbonic anhydrase. H+initially exited the cell, followed by secretion of HCO3−. Secretion was dependent on a functioning basolateral sodium/proton exchanger, a functioning basolateral HCO3−uptake mechanism, and submucosal prostaglandin generation and facilitated hydration of CO2into HCO3−and H+.

2003 ◽  
Vol 285 (6) ◽  
pp. G1242-G1248 ◽  
Author(s):  
Philipp Kirchhoff ◽  
Carsten A. Wagner ◽  
Florian Gaetzschmann ◽  
Klaus Radebold ◽  
John P. Geibel

Previous studies have shown that gastric glands express at least sodium-hydrogen exchanger (NHE) isoforms 1-4. Our aim was to study NHE-3 localization in rat parietal cells and to investigate the functional activity of an apical membrane NHE-3 isoform in parietal cells of rats. Western blot analysis and immunohistochemistry showed expression of NHE-3 in rat stomach colocalizing the protein in parietal cells together with the β-subunit of the H+-K+-ATPase. Functional studies in luminally perfused gastric glands demonstrated the presence of an apical NHE isoform sensitive to low concentrations of 5-ethylisopropyl amiloride (EIPA). Intracellular pH measurements in parietal cells conducted in omeprazole-pretreated superfused gastric glands showed an Na+-dependent proton extrusion pathway that was inhibited both by low concentrations of EIPA and by the NHE-3 specific inhibitor S3226. This pathway for proton extrusion had a higher activity in resting glands and was inhibited on stimulation of histamine-induced H+-K+-ATPase proton extrusion. We conclude that the NHE-3 isoform located on the apical membrane of parietal cells offers an additional pathway for proton secretion under resting conditions. Furthermore, the gastric NHE-3 appears to work under resting conditions and inactivates during periods of H+-K+-ATPase activity.


2020 ◽  
Vol 17 ◽  
Author(s):  
Dhandeep Singh ◽  
Nirmal Singh

: Ischemia reperfusion injury is responsible for impaired graft functioning in organ transplants, cerebral dysfunction, ischemic heart diseases, systemic inflammatory response syndrome, gastrointestinal dysfunction, and multiple organ dysfunction syndromes. Intracellular pH is critical for cell survival in ischemia reperfusion injury. Sodium hydrogen exchanger I and carbonic anhydrase II are critical in regulation of intracellular pH. Inhibition of sodium hydrogen exchanger I and carbonic anhydrase II during reprfusion is found to ameliorate ischemia reperfusion injury separately. An attempt is made to synthesize dual inhibitors of sodium hydrogen exchanger and carbonic anhydrase to have better potential drug molecule in ischemia reperfusion injury treatment. The hydroxybenzotriazole is considered as a central pharmacophore for this dual activity and 12 derivatives are synthesized. All derivatives are tested for sodium hydrogen exchanger I and carbonic anhydrase II inhibitory activity. The tosylate derivative (12) is found to be the most potent derivative with IC50 158.7± 8.4 µM for carbonic anhydrase II and 31.07 ± 1.06 µM for sodium hydrogen exchanger I. Although the potency is less than standard drugs but this is the first report of dual inhibitor of carbonic anhydrase II and sodium hydrogen exchanger.


Cell Cycle ◽  
2021 ◽  
pp. 1-18
Author(s):  
Ling Ran ◽  
Tao Yan ◽  
Yiling Zhang ◽  
Zheng Niu ◽  
Zifei Kan ◽  
...  

2020 ◽  
Vol 1 (2) ◽  
pp. 71-100 ◽  
Author(s):  
Carol Ward ◽  
James Meehan ◽  
Mark E Gray ◽  
Alan F Murray ◽  
David J Argyle ◽  
...  

Dysregulation of cellular pH is frequent in solid tumours and provides potential opportunities for therapeutic intervention. The acidic microenvironment within a tumour can promote migration, invasion and metastasis of cancer cells through a variety of mechanisms. Pathways associated with the control of intracellular pH that are under consideration for intervention include carbonic anhydrase IX, the monocarboxylate transporters (MCT, MCT1 and MCT4), the vacuolar-type H+-ATPase proton pump, and the sodium-hydrogen exchanger 1. This review will describe progress in the development of inhibitors to these targets.


2018 ◽  
Vol 4 (Supplement 2) ◽  
pp. 221s-221s
Author(s):  
S. Kumar ◽  
S.K. Sharma ◽  
B. Medhi ◽  
K.L. Khanduja

Background: Cigarette smoking is responsible for various lung pathologies including chronic lung inflammation, emphysema, chronic obstructive pulmonary disease (COPD), cancer, and annually causes almost 10 million deaths globally. During smoke exposure, most affected cells are the alveolar epithelial cells where as a repair mechanism, activation of cytosolic phospholipase A2 enzymes takes place. High free radicals and cPLA2 activity due to continuous exposure of smoke exposure leads to elevated levels of secondary metabolites and various pathophysiologic conditions such as chronic inflammation, oxidative stress and cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites whose role is well defined in progression of cancer, we checked the therapeutic potential of cPLA2 inhibitor arachidonyl trifluromethyl ketone (ATK) by pharmacologically targeting the most expressible cPLA2 during continuous exposure of cigarette smoke. Aim: To check the therapeutic potential of cytosolic PLA2 isoform specific inhibitor arachidonyl trifluromethyl ketone in cigarette smoke condensate–induced pathologic conditions in alveolar type I and II epithelial cells. Methods: Effect of cPLA2 inhibitor on CSC-induced cPLA2 activity were checked using colorimetric assay, cell viability using MTT assay, FDA uptake assay using fluorescence microscopy, ROS levels and apoptosis markers through flow cytometry, and ERK levels using ELISA, in both type of alveolar epithelial cells. Results: ATK significantly mimicked CSC-induced cPLA2 activity, free radicals, primary apoptosis, ratio of apoptotic/apoptotic proteins and levels of ERK whereas protected cells from loss of cell viability and membrane integrity. Conclusion: Current observations revealed cPLA2s as a potential therapeutic target and their inhibitor ATK as a potential therapeutic agent in Cigarette smoke induced pathological conditions in alveolar type I and II epithelial cells.


2021 ◽  
Vol 22 (6) ◽  
pp. 2999
Author(s):  
Benjamin J. Buckley ◽  
Ashna Kumar ◽  
Ashraf Aboelela ◽  
Richard S. Bujaroski ◽  
Xiuju Li ◽  
...  

The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co‑screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5,715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.


Sign in / Sign up

Export Citation Format

Share Document