scholarly journals The impact of tumour pH on cancer progression: strategies for clinical intervention

2020 ◽  
Vol 1 (2) ◽  
pp. 71-100 ◽  
Author(s):  
Carol Ward ◽  
James Meehan ◽  
Mark E Gray ◽  
Alan F Murray ◽  
David J Argyle ◽  
...  

Dysregulation of cellular pH is frequent in solid tumours and provides potential opportunities for therapeutic intervention. The acidic microenvironment within a tumour can promote migration, invasion and metastasis of cancer cells through a variety of mechanisms. Pathways associated with the control of intracellular pH that are under consideration for intervention include carbonic anhydrase IX, the monocarboxylate transporters (MCT, MCT1 and MCT4), the vacuolar-type H+-ATPase proton pump, and the sodium-hydrogen exchanger 1. This review will describe progress in the development of inhibitors to these targets.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Chao Wang ◽  
Daya Luo

AbstractMetastasis is a complex multistep cascade of cancer cell extravasation and invasion, in which metabolism plays an important role. Recently, a metabolic adaptation mechanism of cancer metastasis has been proposed as an emerging model of the interaction between cancer cells and the host microenvironment, revealing a deep and extensive relationship between cancer metabolism and cancer metastasis. However, research on how the host microenvironment affects cancer metabolism is mostly limited to the impact of the local tumour microenvironment at the primary site. There are few studies on how differences between the primary and secondary microenvironments promote metabolic changes during cancer progression or how secondary microenvironments affect cancer cell metastasis preference. Hence, we discuss how cancer cells adapt to and colonize in the metabolic microenvironments of different metastatic sites to establish a metastatic organotropism phenotype. The mechanism is expected to accelerate the research of cancer metabolism in the secondary microenvironment, and provides theoretical support for the generation of innovative therapeutic targets for clinical metastatic diseases.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1756
Author(s):  
Jessica Guerra ◽  
Paola Chiodelli ◽  
Chiara Tobia ◽  
Claudia Gerri ◽  
Marco Presta

Primary cilium drives the left-right asymmetry process during embryonic development. Moreover, its dysregulation contributes to cancer progression by affecting various signaling pathways. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system modulates primary cilium length and plays a pivotal role in embryogenesis and tumor growth. Here, we investigated the impact of the natural FGF trap long-pentraxin 3 (PTX3) on the determination of primary cilium extension in zebrafish embryo and cancer cells. The results demonstrate that down modulation of the PTX3 orthologue ptx3b causes the shortening of primary cilium in zebrafish embryo in a FGF-dependent manner, leading to defects in the left-right asymmetry determination. Conversely, PTX3 upregulation causes the elongation of primary cilium in FGF-dependent cancer cells. Previous observations have identified the PTX3-derived small molecule NSC12 as an orally available FGF trap with anticancer effects on FGF-dependent tumors. In keeping with the non-redundant role of the FGF/FGR system in primary cilium length determination, NSC12 induces the elongation of primary cilium in FGF-dependent tumor cells, thus acting as a ciliogenic anticancer molecule in vitro and in vivo. Together, these findings demonstrate the ability of the natural FGF trap PTX3 to exert a modulatory effect on primary cilium in embryonic development and cancer. Moreover, they set the basis for the design of novel ciliogenic drugs with potential implications for the therapy of FGF-dependent tumors.


2019 ◽  
Vol 476 (10) ◽  
pp. 1497-1513 ◽  
Author(s):  
Mam Y. Mboge ◽  
Zhijuan Chen ◽  
Daniel Khokhar ◽  
Alyssa Wolff ◽  
Lingbao Ai ◽  
...  

AbstractThe most aggressive and invasive tumor cells often reside in hypoxic microenvironments and rely heavily on rapid anaerobic glycolysis for energy production. This switch from oxidative phosphorylation to glycolysis, along with up-regulation of the glucose transport system, significantly increases the release of lactic acid from cells into the tumor microenvironment. Excess lactate and proton excretion exacerbate extracellular acidification to which cancer cells, but not normal cells, adapt. We have hypothesized that carbonic anhydrases (CAs) play a role in stabilizing both intracellular and extracellular pH to favor cancer progression and metastasis. Here, we show that proton efflux (acidification) using the glycolytic rate assay is dependent on both extracellular pH (pHe) and CA IX expression. Yet, isoform-selective sulfonamide-based inhibitors of CA IX did not alter proton flux, which suggests that the catalytic activity of CA IX is not necessary for this regulation. Other investigators have suggested the CA IX co-operates with the MCT transport family to excrete protons. To test this possibility, we examined the expression patterns of selected ion transporters and show that members of this family are differentially expressed within the molecular subtypes of breast cancer. The most aggressive form of breast cancer, triple-negative breast cancer, appears to co-ordinately express the monocarboxylate transporter 4 (MCT4) and carbonic anhydrase IX (CA IX). This supports a possible mechanism that utilizes the intramolecular H+ shuttle system in CA IX to facilitate proton efflux through MCT4.


2020 ◽  
Vol 117 (43) ◽  
pp. 26756-26765
Author(s):  
Botai Xuan ◽  
Deepraj Ghosh ◽  
Joy Jiang ◽  
Rachelle Shao ◽  
Michelle R. Dawson

Polyploidal giant cancer cells (PGCCs) are multinucleated chemoresistant cancer cells found in heterogeneous solid tumors. Due in part to their apparent dormancy, the effect of PGCCs on cancer progression has remained largely unstudied. Recent studies have highlighted the critical role of PGCCs as aggressive and chemoresistant cancer cells, as well as their ability to undergo amitotic budding to escape dormancy. Our recent study demonstrated the unique biophysical properties of PGCCs, as well as their unusual migratory persistence. Here we unveil the critical function of vimentin intermediate filaments (VIFs) in maintaining the structural integrity of PGCCs and enhancing their migratory persistence. We performed in-depth single-cell analysis to examine the distribution of VIFs and their role in migratory persistence. We found that PGCCs rely heavily on their uniquely distributed and polarized VIF network to enhance their transition from a jammed to an unjammed state to allow for directional migration. Both the inhibition of VIFs with acrylamide and small interfering RNA knockdown of vimentin significantly decreased PGCC migration and resulted in a loss of PGCC volume. Because PGCCs rely on their VIF network to direct migration and to maintain their enlarged morphology, targeting vimentin or vimentin cross-linking proteins could provide a therapeutic approach to mitigate the impact of these chemoresistant cells in cancer progression and to improve patient outcomes with chemotherapy.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1139 ◽  
Author(s):  
Veronika Liskova ◽  
Sona Hudecova ◽  
Lubomira Lencesova ◽  
Filippo Iuliano ◽  
Marta Sirova ◽  
...  

Hypoxia and acidosis are among the key microenvironmental factors that contribute to cancer progression. We have explored a possibility that the type 1Na+/Ca2+ exchanger (NCX1) is involved in pH control in hypoxic tumors. We focused on changes in intracellular pH, co-localization of NCX1, carbonic anhydrase IX (CA IX), and sodium proton exchanger type 1 (NHE1) by proximity ligation assay, immunoprecipitation, spheroid formation assay and migration of cells due to treatment with KB-R7943, a selective inhibitor of the reverse-mode NCX1. In cancer cells exposed to hypoxia, reverse-mode NCX1 forms a membrane complex primarily with CA IX and also with NHE1. NCX1/CA IX/NHE1 assembly operates as a metabolon with a potent ability to extrude protons to the extracellular space and thereby facilitate acidosis. KB-R7943 prevents formation of this metabolon and reduces cell migration. Thus, we have shown that in hypoxic cancer cells, NCX1 operates in a reverse mode and participates in pH regulation in hypoxic tumors via cooperation with CAIX and NHE1.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ziqian Yan ◽  
Zhimei Sheng ◽  
Yuanhang Zheng ◽  
Ruijun Feng ◽  
Qinpei Xiao ◽  
...  

AbstractStudies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3′UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.


2020 ◽  
Vol 17 ◽  
Author(s):  
Dhandeep Singh ◽  
Nirmal Singh

: Ischemia reperfusion injury is responsible for impaired graft functioning in organ transplants, cerebral dysfunction, ischemic heart diseases, systemic inflammatory response syndrome, gastrointestinal dysfunction, and multiple organ dysfunction syndromes. Intracellular pH is critical for cell survival in ischemia reperfusion injury. Sodium hydrogen exchanger I and carbonic anhydrase II are critical in regulation of intracellular pH. Inhibition of sodium hydrogen exchanger I and carbonic anhydrase II during reprfusion is found to ameliorate ischemia reperfusion injury separately. An attempt is made to synthesize dual inhibitors of sodium hydrogen exchanger and carbonic anhydrase to have better potential drug molecule in ischemia reperfusion injury treatment. The hydroxybenzotriazole is considered as a central pharmacophore for this dual activity and 12 derivatives are synthesized. All derivatives are tested for sodium hydrogen exchanger I and carbonic anhydrase II inhibitory activity. The tosylate derivative (12) is found to be the most potent derivative with IC50 158.7± 8.4 µM for carbonic anhydrase II and 31.07 ± 1.06 µM for sodium hydrogen exchanger I. Although the potency is less than standard drugs but this is the first report of dual inhibitor of carbonic anhydrase II and sodium hydrogen exchanger.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenman Zhao ◽  
Tao Han ◽  
Bao Li ◽  
Qianyun Ma ◽  
Pinghua Yang ◽  
...  

Abstract Background Increasing researches have demonstrated the critical functions of MicroRNAs (miRNAs) in the progression of malignant tumors, including ovarian cancer. It was reported that miR-552 was an important oncogene in both breast cancer and colorectal cancer. However, the role of miR-552 in ovarian cancer (OC) remains to be elucidated. Methods RT-PCR and western blot analysis were used to detect the expression of miR-552 and PTEN. The impact of miR-552 on ovarian cancer proliferation and metastasis was investigated in vitro. The prognostic value of miR-552 was evaluated using the online bioinformatics tool Kaplan-Meier plotter. Results In the present study, we for first found that miR-552 was upregulated in ovarian cancer, especially in metastatic and recurrence ovarian cancer. Forced miR-552 expression promotes the growth and metastasis of ovarian cancer cells. Consistently, miR-552 interference inhibits the proliferation and metastasis of ovarian cancer cells. Mechanically, bioinformatics and luciferase reporter analysis identified Phosphatase and tension homolog (PTEN) as a direct target of miR-552. miR-552 downregulated the PTEN mRNA and protein expression in ovarian cancer cells. Furthermore, the PTEN siRNA abolishes the discrepancy of growth and metastasis capacity between miR-552 mimic ovarian cells and control cells. More importantly, upregulation of miR-552 predicts the poor prognosis of ovarian cancer patients. Conclusion Our findings revealed that miR-552 could promote ovarian cancer cells progression by targeting PTEN signaling and might therefore be useful to predict patient prognosis.


2020 ◽  
Author(s):  
Seyhan Türk ◽  
Can Türk ◽  
Elif Sena Temirci ◽  
Umit Yavuz Malkan ◽  
Gulberk Ucar ◽  
...  

Abstract Background: Enterococcus faecalis (E. faecalis) is an important commensal microbiota member of the human gastrointestinal tract. Many studies have shown that infection rates with E. faecalis increase significantly in gastric cancer. The infections that developed during the cancer progress are definitive scientific evidence, but it is still not clear whether this effect is in the benefit (decrease in metastasis) or damage of the host (increase in proliferation, invasion, stem cell like phenotype) due to the infection factor. These opposed data can provide significant contrubition in the understanding of cancer progress when it is analyzed detailed. Methods: In this study, we determined altered genes related to E. faecalis infection in gastric cell line MKN74 and relevant pathways to figure out whether infection slows or accelerates cancer progression. The gene expression data were retrieved from Array Express (E-MEXP-3496). Variance, t-test and linear regression analysis, hierarchical clustering, network, and pathway analysis were performed. Results: We determined 12 genes corresponding 15 probesets expressions were downregulated following the live infection of gastric cancer cells with E. faecalis. We identified the network between these genes and the pathways to which they belong. Pathway analysis results have shown that these genes are mostly associated with cancer cell proliferation. Conclusions: Almost all of the genes that we detected as significantly downregulated have an adverse effect especially on the proliferation of cancer cells in the process of infection. In this case, it seems that E. faecalis infection may be an important factor that slows gastric cancer proliferation.


Sign in / Sign up

Export Citation Format

Share Document