Liver disease with altered bile acid transport in Niemann-Pick C mice on a high-fat, 1% cholesterol diet

2005 ◽  
Vol 289 (2) ◽  
pp. G300-G307 ◽  
Author(s):  
Robert P. Erickson ◽  
Achyut Bhattacharyya ◽  
Robert J. Hunter ◽  
Randall A. Heidenreich ◽  
Nathan J. Cherrington

Cholestatic hepatitis is frequently found in Niemann-Pick C (NPC) disease. We studied the influence of diet and the low density lipoprotein receptor (LDLR, Ldlr in mice, known to be the source of most of the stored cholesterol) on liver disease in the mouse model of NPC. Npc1−/− mice of both sexes, with or without the Ldlr knockout, were fed a 18% fat, 1% cholesterol (“high-fat”) diet and were evaluated by chemical and histological methods. Bile acid transporters [multidrug resistance protein (Mrps) 1–5; Ntcp, Bsep, and OatP1, 2, and 4] were quantitated by real-time RT-PCR. Many mice died prematurely (within 6 wk) with hepatomegaly. Histopathology showed an increase in macrophage and hepatocyte lipids independent of Ldlr genotype. Non-zone-dependent diffuse fibrosis was found in the surviving mice. Serum alanine aminotransferase was elevated in Npc1−/− mice on the regular diet and frequently became markedly elevated with the high-fat diet. Serum cholesterol was increased in the controls but not the Npc1−/− mice on the high-fat diet; it was massively increased in the Ldlr−/− mice. Esterified cholesterol was greatly increased by the high-fat diet, independent of Ldlr genotype. γ-Glutamyltransferase was also elevated in Npc1−/− mice, more so on the high-fat diet. Mrps 1–5 were elevated in Npc1−/− liver and became more elevated with the high-fat diet; Ntcp, Bsep, and OatP2 were elevated in Npc1−/− liver and were suppressed by the high-fat diet. In conclusion, Npc1−/− mice on a high-fat diet provide an animal model of NPC cholestatic hepatitis and indicate a role for altered bile acid transport in its pathogenesis.

2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Doo Jin Choi ◽  
Seong Cheol Kim ◽  
Gi Eun Park ◽  
Bo-Ram Choi ◽  
Dae Young Lee ◽  
...  

The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.


Author(s):  
Baran Ghezelbash ◽  
Nader Shahrokhi ◽  
Mohammad Khaksari ◽  
Firouz Ghaderi-Pakdel ◽  
Gholamreza Asadikaram

AbstractBackgroundNon-alcoholic fatty liver disease (NAFLD) is the main common cause of chronic liver disease. The aim of this study is to evaluate the effect of Shilajit, a medicine of Ayurveda, on the liver damage caused by NAFLD.Materials and methodsForty male Wistar rats, after being established as fatty liver models by feeding a high-fat diet (HFD, 12 weeks), were divided randomly into five groups as follows: control (standard diet), vehicle (HFD + distilled water), high-dose Shilajit (HFD + 250 mg/kg Shilajit), low-dose Shilajit (HFD + 150 mg/kg Shilajit) and pioglitazone (HFD + 10 mg/kg pioglitazone). The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), glucose and liver glutathione peroxidase (GPx), superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, liver weight, and histopathological manifestation outcomes were measured after the 2-week intervention.ResultsShilajit treatment significantly reduced the values of AST and ALT, TG, TC, LDL, glucose, liver weight, and steatosis, and instead, increased high-density lipoprotein (HDL) compared with the vehicle group (p < 0.05). Further, Shilajit treatment improved the adverse effects of HFD-induced histopathological changes in the liver as compared with the vehicle group (p < 0.001). MDA level and GPx activity increased but SOD activity decreased in the vehicle group compared with the control group (p < 0.05), while treatment with Shilajit restored the antioxidant/oxidant balance toward a significant increase in the antioxidant system in the Shilajit group (p < 0.05).ConclusionsThese findings suggest that Shilajit improved the histopathological NAFLD changes in the liver and indicated the potential applicability of Shilajit as a potent agent for NAFLD treatment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dandan Sheng ◽  
Shanmin Zhao ◽  
Lu Gao ◽  
Huifei Zheng ◽  
Wenting Liu ◽  
...  

Abstract Background Babaodan (BBD), a traditional Chinese medicine, has been shown to have protective effects during liver injury and ameliorate liver disease progression, but little is known about its effect on non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the effects of BBD on obesity-induced NAFLD. Methods C57BL/6 J mice were fed with normal diet, high fat diet (HFD) or HFD + BBD for 8 weeks. Weights of all mice were recorded every 3 days. At the end of the experiments, the level of livers, kidneys and adipose tissues of each animal was weighed. Blood serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) cholesterol, low density lipoprotein cholesterol (LDL-C), glucose and leptin were detected with appropriate test kits. Haematoxylin–eosin (HE), Masson trichrome and Oil Red O staining of the liver were performed. We applied immunohistochemical analysis to investigate the expression of TNF-α, IL-6 and leptin in liver tissue. The expression of genes related lipid anabolism (SREBP1-c, ACC, SCD-1, LXRα and CD36) and ß-oxidation (CPT-1 and PPARα) in liver and adipose tissues was determined by RT-PCR. The expression of AMPK and p-AMPK was determined by western blot analysis. Results We found the weight of bodies and tissues (retroperitoneal fat pads, kidneys and livers) of mice fed with HFD + BBD were significantly lower than that of HFD-fed mice. And liver injury induced by HFD was relieved in mice treated with BBD, accompanied with significant reduction were observed in serum ALT/AST activities and alleviated pathological damage. The levels of glucose, TG, TC, HDL-C and LDL-C in the liver or serum were significantly decreased on HFD + BBD group compared with HFD group. Furthermore, BBD treatment reduced the level of TNF-α and IL-6 induced by HFD. The level of leptin in the liver and serum were reduced in mice fed with HFD + BBD than that of HFD-fed mice. Several lipid synthesis genes (SREBP1-c, ACC, SCD-1, LXRα and CD36) were down-regulated and that of ß-oxidation (CPT-1 and PPARα) up-regulated in HFD + BBD group compared with HFD group. In addition, BBD increased the expression of p-AMPK compared with untreated HFD group, which suggested BBD improved the activation of AMPK pathway. Conclusion In summary, our results indicate that BBD has potential applications in the prevention and treatment of NAFLD, which may be closely related to its effect on lipid metabolism via activation of AMPK signaling.


2006 ◽  
Vol 19 (2) ◽  
pp. 79-93
Author(s):  
Charmaine D. Rochester ◽  
Catherine E. Cooke

To date, the major emphasis of dyslipidemia management has focused on the reduction of serum low-density lipoprotein cholesterol (LDL-C) levels, which several robust trials show significantly decreases the risk of coronory heart disease (CHD). To achieve goal LDL-C levels will require that some individuals take more than 1 cholesterol-lowering medication. In addition, many dyslipidemic patients also have concomitant risk factors for cardiovascular disease including hypertension, elevated plasma glucose, and high body mass index, requiring additional therapies. In addition to drugs that lower LDL-C, several agents under investigation are targeting other markers for decreasing the risk of atherosclerotic disease. Some of these agents target the reduction of C-reactive protein with a more potent statin, increased high-density lipoprotein cholesterol (HDL-C) with the cholesterol ester transfer protein inhibitor, inhibition of triglyceride or very-low-density lipoprotein cholesterol (VLDL-C) with the acyl coenzyme A: cholesterol acyltransferase inhibitor, reduction of VLDL-C with microsomal triglyceride transfer protein inhibitor, change in percentage coronary atheroma volume with HDL-C mimetics, and the reduction of bile acid transport and reabsorption with the ileal bile acid transport inhibitors. This review will provide an overview of the existing landscape for the medical treatment of dyslipidemia, including available therapies and future trends.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanbo Feng ◽  
Han Li ◽  
Cong Chen ◽  
Hao Lin ◽  
Guangyu Xu ◽  
...  

The aim of this study was to investigate the hepatoprotection of Schisandra chinensis Caulis polysaccharides (SCPs) in the nonalcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD) in rats. A total of 30 Wistar rats were randomly divided into the control group (CON), model group (MOD), and Schisandra chinensis caulis polysaccharide (SCP) group. Except for those in the CON group, the other rats were fed with high-fat diet for 4 weeks to establish an NAFLD model. From the 5th week, rats in the SCP group were given SCP solution (100 mg kg−1) by gavage for 6 weeks, and those in the CON and MOD groups were given an equal volume of distilled water in the same way. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) levels in serum, the malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities in the liver tissue were detected. The small molecular metabolites in the blood of rats were determined by the metabolomics method of ultra-high-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) combined with multivariate analysis. The enrichment analysis and pathway analysis of the different metabolites were carried out. The therapeutic mechanism of SCP in NAFLD rats was verified by western blot. The results showed that the levels of AST, ALT, TG, TC, and LDL-C in the serum of rats in the SCP group were significantly lower, and the levels of HDL-C were significantly higher than those in the MOD group. The screening and analysis of the metabolic pathways showed that SCP could alleviate the development of NAFLD by regulating the expression of UDP-glucose pyrophosphorylase (UGP2), UDP-glucose 6-dehydrogenase (UGDH), acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS) in the liver of NAFLD rats. This study may provide a theoretical basis for the development and utilization of SCP.


2018 ◽  
Vol 315 (5) ◽  
pp. G772-G780 ◽  
Author(s):  
Lino Arisqueta ◽  
Hiart Navarro-Imaz ◽  
Ibone Labiano ◽  
Yuri Rueda ◽  
Olatz Fresnedo

High-fat diet (HFD) feeding or leptin-deficient mice are extensively used as models resembling features of human nonalcoholic fatty liver disease (NAFLD). The concurrence of experimental factors as fat content and source or total caloric intake leads to prominent differences in the development of the hepatic steatosis and related disturbances. In this work, we characterized the hepatic lipid accumulation induced by HFD in wild-type (WT) and ob/ ob mice with the purpose of differentiating adaptations to HFD from those specific of increased overfeeding due to leptin deficiency-associated hyperphagia. Given that most published works have been done in male models, we used female mice with the aim of increasing the body of evidence regarding NAFLD in female subjects. HFD promoted liver lipid accumulation only in the hyperphagic strain. Nevertheless, a decrease of lipid droplet-associated cholesteryl ester (CE) in both WT and obese animals was observed. These changes were accompanied by an improvement in the profile of lipoproteins that transport cholesterol and liver function markers in plasma from ob/ ob mice and a lower hepatic index. Using primary hepatocytes from female mice, overaccumulation of CE induced by 0.4 mM oleic acid reversed in the presence of a specific Takeda G protein-coupled bile acid receptor agonist. Nevertheless, hepatocytes from male mice were not responsive. This study suggests that enterohepatic circulation of bile acids might be one of the factors that can affect sex dimorphism in NAFLD development, which underlines the importance of including female models in the NAFLD research field. NEW & NOTEWORTHY This work provides new insight into the use of high-fat diet as a model to induce nonalcoholic fatty liver disease in wild-type and ob/ ob female mice. We show that high-fat diet induces steatosis only in ob/ ob mice while, surprisingly, several health indicators improve. Noteworthy, experiments with primary hepatocytes from male and female mice show that they express Takeda G protein-coupled bile acid receptor and that it and bile acid enterohepatic circulation might be accountable for sex dimorphism in nonalcoholic fatty liver disease development.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247303
Author(s):  
Yukiomi Nakade ◽  
Rena Kitano ◽  
Kazumasa Sakamoto ◽  
Satoshi Kimoto ◽  
Taeko Yamauchi ◽  
...  

Bile acid has attracted attention as a signal transmission molecule in energy metabolism. Although a high-fat diet (HFD) or obesity is known to increase hepatic fat content and alter bile acid composition, the changes in bile acid composition due to HFD or obesity remain to be elucidated. We sought to examine the bile acid composition in high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in obese diabetic rats. Eight-week-old male spontaneously diabetic Torii fatty (SDTF) rats or control rats were fed an HFD. Twelve weeks post the commencement of HFD, serum and hepatic bile acid compositions and serum GLP-1 levels, which is stimulated by the secondary bile acid deoxycholic acid (DCA), were measured. The correlation between the bile acid composition and serum GLP-1 levels was also examined. While serum and hepatic levels of cholic acid (CA), a primary bile acid, tended to decrease in HFD-fed control rats, they were significantly decreased in HFD-fed SDTF rats. Hepatic CYP8B1, which plays a role in CA synthesis, the mRNA levels were significantly decreased in HFD-fed control and SDTF rats. In contrast, while serum and hepatic DCA levels were not changed in HFD-fed control rats, they were decreased in HFD-fed SDTF rats. Hepatic DCA/CA did not change in HFD-fed SDTF rats, but significantly increased in HFD-fed control rats. While serum GLP-1 levels were not changed in SDTF rats, they were significantly increased in HFD-fed control rats. Hepatic DCA/CA tended to correlate with serum GLP-1 levels, which tended to negatively correlate with the hepatic triglyceride content in SDTF rats. These results indicate that relatively increased DCA might contribute to an increase in serum GLP-1 levels, which inhibits hepatic steatosis in NAFLD.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1399
Author(s):  
Sisi Li ◽  
Shuyi Xu ◽  
Yang Zhao ◽  
Haichao Wang ◽  
Jie Feng

It is widely reported how betaine addition regulates lipid metabolism but how betaine affects cholesterol metabolism is still unknown. This study aimed to investigate the role of betaine in hepatic cholesterol metabolism of Sprague-Dawley rats. Rats were randomly allocated to four groups and fed with a basal diet or a high-fat diet with or without 1% betaine. The experiment lasted 28 days. The results showed that dietary betaine supplementation reduced the feed intake of rats with final weight unchanged. Serum low-density-lipoprotein cholesterol was increased with the high-fat diet. The high-fat diet promoted cholesterol synthesis and excretion by enhancing the HMG-CoA reductase and ABCG5/G8, respectively, which lead to a balance of hepatic cholesterol. Rats in betaine groups showed a higher level of hepatic total cholesterol. Dietary betaine addition enhanced cholesterol synthesis as well as conversion of bile acid from cholesterol by increasing the levels of HMGCR and CYP7A1. The high-fat diet decreased the level of bile salt export pump, while dietary betaine addition inhibited this decrease and promoted bile acid efflux and increased total bile acid levels in the intestine. In summary, dietary betaine addition promoted hepatic cholesterol metabolism, including cholesterol synthesis, conversion of bile acids, and bile acid export.


Sign in / Sign up

Export Citation Format

Share Document