Gene expression of activin, activin receptors, and follistatin in intestinal epithelial cells

2000 ◽  
Vol 278 (1) ◽  
pp. G89-G97 ◽  
Author(s):  
Kei Sonoyama ◽  
Suriya Rutatip ◽  
Takanori Kasai

Gene expression of activin, activin receptors, and follistatin was investigated in vivo and in vitro using semiquantitative RT-PCR in intestinal epithelial cells. Rat jejunum and the intestinal epithelial cell line IEC-6 expressed mRNA encoding the βA-subunit of activin, α-subunit of inhibin, activin receptors IB and IIA, and follistatin. An epithelial cell isolation study focused along the crypt-villus axis in rat jejunum showed that βA mRNA levels were eight- to tenfold higher in villus cells than in crypt cells. Immunohistochemistry revealed the expression of activin A in upper villus cells. The human intestinal cell line Caco-2 was used as a differentiation model of enterocytes. Four- to fivefold induction of βA mRNA was observed in postconfluent Caco-2 cells grown on filter but not in those cells grown on plastic. In contrast, follistatin mRNA was seen to be reduced after reaching confluence. Exogenous activin A dose-dependently suppressed the proliferation and stimulated the expression of apolipoprotein A-IV gene, a differentiation marker, in IEC-6 cells. These results suggest that the activin system is involved in the regulation of such cellular functions as proliferation and differentiation in intestinal epithelial cells.

Author(s):  
Rino P. Donato ◽  
Adaweyah El-Merhibi ◽  
Batjargal Gundsambuu ◽  
Kai Yan Mak ◽  
Emma R. Formosa ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1895 ◽  
Author(s):  
Sepideh Fallah ◽  
Jean-François Beaulieu

The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.


2017 ◽  
Author(s):  
Shanshan Kong ◽  
Weiqiang Zhang

AbstractCFTR is a cAMP-regulated chloride channel located in the apical surface of intestinal epithelial cells; where it forms a macromolecular complex with NHERF2 and LPA2. CFTR has been shown to play a role in the pathogenies of several types of secretory diarrheas. Inflammatory bowel disease (IBD) is a chronic condition of intestine characterized by severe inflammation and mucosal destruction, genetic analysis has shown that LPA contribute to IBD and patients of cystic fibrosis also display the phenotype of diarrhea. The purpose of this study is to investigate if this complex plays a role in the inflammatory responses of intestinal epithelium.We then explored the role of this complex in maintaining the integrity of tight junction and inflammatory responses in these cells. In vitro assays show that inhibiting CFTR or LPA2 in the intestinal epithelial cell could disrupt the epithelial cell junction, and reduce the TER of intestinal epithelial cells in both mouse and human cell line. EƯSA assay show that intriguing LPA2 through LPS or LPA can increase the secretion of IL-8, while inhibiting or SiRNA knockdown of LPA2 can decrease the secretion of IL-8 in mouse or human intestinal epithelial cells. The CFTR inhibitor can reduce the IL-8 secretion in both mouse and human cell line, the deletion of CFTR in mouse intestine does not affect the IL-8 level, but the knockdown of CFTR in human cell line reduced the IL-8 protein level. The deletion of CFTR in human also reduced the IL-8 mRNA level. This indicates the CFTR-LPA complex is necessary for the expression of IL-8.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Sylvester Larsen ◽  
Jakob Benedict Seidelin ◽  
Johanne Davidsen ◽  
Katja Dahlgaard ◽  
Claus Henrik Nielsen ◽  
...  

2022 ◽  
Vol 12 (5) ◽  
pp. 1015-1021
Author(s):  
Gen Lin ◽  
Ruichun Long ◽  
Xiaoqing Yang ◽  
Songsong Mao ◽  
Hongying Li

Objective: The present study aimed to investigate the role of etomidate in intestinal cell ischemia and hypoxia-reperfusion injury and potential mechanisms. Method: In this study, we establish the intestinal epithelial cells ischemia-reperfusion model in vitro. CCK8 was used to detect cell viability and flow cytometry assay was used to detect apoptosis levels of treated OGD/R model cells. ELISA measured the expression level of oxidative stress factors and inflammatory factors. Furthermore, western blot assay was used to detect the expression the apoptosis-related factors and TNFR-associated factors in treated OGD/R model cells. Result: Etomidate does not affect the activity of intestinal epithelial cells, and can protect intestinal epithelial cells to reduce ischemiareperfusion injury, and the expression of inflammatory factors and oxidative stress in cells with mild intestinal epithelial ischemia-reperfusion injury. Etomidate alleviates apoptosis of intestinal epithelial ischemia-reperfusion injury cells. Etomidate inhibits the activation of traf6-mediated NF-κB signal during ischemia-anoxia reperfusion of intestinal epithelial cells. Conclusion: Taken together, our study demonstrated that etomidate attenuates inflammatory response and apoptosis in intestinal epithelial cells during ischemic hypoxia-reperfusion injury and inhibits activation of NF-κB signaling regulated by TRAF6.


Shock ◽  
2001 ◽  
Vol 16 (4) ◽  
pp. 259-263 ◽  
Author(s):  
Maryam Varedi ◽  
Heung-Man Lee ◽  
George H. Greeley ◽  
David N. Herndon ◽  
Ella W. Englander

1999 ◽  
Vol 277 (1) ◽  
pp. G175-G182 ◽  
Author(s):  
Maryam Varedi ◽  
George H. Greeley ◽  
David N. Herndon ◽  
Ella W. Englander

The effects of a 60% body surface area thermal injury in rats on the morphology and proliferation of the epithelium of the small intestine and the in vitro effects of serum collected from scalded rats on intestinal epithelial cells were investigated. Scald injury caused significant reductions in duodenal villus width and crypt dimensions, villus enterocytes changed in shape from columnar to cuboidal, and the number of goblet cells decreased. The proportion of bromodeoxyuridine-labeled S phase cells in crypts was also diminished. In vitro, incubation of intestinal epithelial cells (IEC-6) with scalded rat serum (SRS) collected at either 12 or 24 h after injury caused a disruption in the integrity of the confluent culture and induced the appearance of large denuded areas. SRS also decreased DNA synthesis and delayed wound closure in an in vitro wound-healing model. The thermal injury-induced changes in intestinal mucosal morphology and epithelial cell growth characteristics described in this study may underlie, in part, the mechanism(s) involved in the diminished absorption of nutrients, increased intestinal permeability, and sepsis in patients with thermal injury.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


Sign in / Sign up

Export Citation Format

Share Document