Involvement of PI 3-kinase in IGF-I stimulation of jejunal Na+-K+-ATPase activity and nutrient absorption
Mechanisms responsible for increased jejunal transport rates observed in tissues treated with orally administered insulin-like growth factor-I (IGF-I) were studied in 5-day-old colostrum-deprived piglets. Human recombinant IGF-I (3.5 mg · kg−1 · day−1) or control vehicle was given orogastrically for 4 days. Disaccharidase activity, fructose uptake, and Na+-glucose cotransporter SGLT-1 protein abundance were similar between groups. Oral IGF-I produced greater rates of enterocyte Na+-K+-ATPase activity with no significant differences in Na+-K+-ATPase abundance. Cellular mechanisms responsible for transport changes were studied in Ussing chambers. In control tissues, the presence of IGF-I in mucosal solutions increased basal short-circuit current ( I sc), potential difference, d-glucose-stimulated I sc, and Na+-K+-ATPase activity; these changes were abolished by preincubation of tissues with wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. The results suggest that the effect of IGF-I on jejunal ion and nutrient transport involves activation of PI 3-kinase and stimulation of Na+-K+-ATPase activity in enterocytes.