Femoral artery neointimal hyperplasia is reduced after wire injury in Ref-1+/− mice

2007 ◽  
Vol 292 (1) ◽  
pp. H516-H521 ◽  
Author(s):  
David L. Basi ◽  
Neeta Adhikari ◽  
Ami Mariash ◽  
Qinglu Li ◽  
Esther Kao ◽  
...  

Redox factor-1 (Ref-1) is a multifunctional protein that regulates redox, DNA repair, and the response to cell stress. We previously demonstrated that Ref-1+/− mice exhibit a significantly reduced Ref-1 mRNA and protein levels within the vasculature, which are associated with increased oxidative stress. The goal of this study was to test the hypothesis that partial loss of Ref-1 altered the cellular response to vascular injury. Fourteen days after femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in Ref-1+/− mice compared with that in wild-type mice ( P < 0.01). Bromodeoxyuridine labeling and transferase-mediated dUTP nick-end labeling staining at 14 days did not differ in the Ref-1+/− mice. In vitro studies found no significant changes in either serum-induced proliferation or baseline apoptosis in Ref-1+/− vascular smooth muscle cells. Exposure to Fas ligand; however, did result in increased susceptibility of Ref-1+/− vascular smooth muscle cells to apoptosis ( P < 0.001). Ref-1+/− mice exhibited an increase in circulating baseline levels of IL-10, IL-1α, and VEGF compared with those in wild-type mice but a marked impairment in these pathways in response to injury. In sum, loss of a single allele of Ref-1 is sufficient to reduce intimal lesion formation and to alter circulating cytokine and growth factor expression.

Author(s):  
Duong Ngoc Diem Nguyen ◽  
William M Chilian ◽  
Shamsul Mohd Zain ◽  
Muhammad Fauzi Daud ◽  
Yuh Fen Pung

Cardiovascular disease (CVD) is among the leading causes of death worldwide. Micro-RNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs was also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages were discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression and/or miRNA-derived therapeutic approaches in CVD research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zaixiong Ji ◽  
Jiaqi Li ◽  
Jianbo Wang

The uncontrolled proliferation and migration of vascular smooth muscle cells is a critical step in the pathological process of restenosis caused by vascular intimal hyperplasia. Jujuboside B (JB) is one of the main biologically active ingredients extracted from the seeds of Zizyphus jujuba (SZJ), which has the properties of anti-platelet aggregation and reducing vascular tension. However, its effects on restenosis after vascular intervention caused by VSMCs proliferation and migration remain still unknown. Herein, we present novel data showing that JB treatment could significantly reduce the neointimal hyperplasia of balloon-damaged blood vessels in Sprague-Dawley (SD) rats. In cultured VSMCs, JB pretreatment significantly reduced cell dedifferentiation, proliferation, and migration induced by platelet-derived growth factor-BB (PDGF-BB). JB attenuated autophagy and reactive oxygen species (ROS) production stimulated by PDGF-BB. Besides, JB promoted the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). Notably, inhibition of AMPK and PPAR-γ partially reversed the ability of JB to resist the proliferation and migration of VSMCs. Taken as a whole, our findings reveal for the first time the anti-restenosis properties of JB in vivo and in vitro after the endovascular intervention. JB antagonizes PDGF-BB-induced phenotypic switch, proliferation, and migration of vascular smooth muscle cells partly through AMPK/PPAR-γ pathway. These results indicate that JB might be a promising clinical candidate drug against in-stent restenosis, which provides a reference for further research on the prevention and treatment of vascular-related diseases.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Khatuna Gabunia ◽  
Stephen P Ellison ◽  
James M Richards ◽  
Sheri E Kelemen ◽  
Michael V Autieri

IL-19 is a recently described, putative anti-inflammatory cytokine which had previously been ascribed to be leukocyte specific. IL-19 is not detected in normal artery, but we detected IL-19 in multiple cell types in human atherosclerotic plaque suggesting a role for this interleukin in atherosclerosis. The purpose of this study was to determine whether administration of exogenous IL-19 could attenuate development of pre-formed atherosclerotic plaque, and to identify potential molecular mechanisms. LDLR-/- mice were fed high-fat diet for 12 weeks and then administered with 10ng/g/day IL-19 or PBS for an additional 8 weeks. En face analysis demonstrated that IL-19 could halt, but not reverse existing plaque (26.7+/-1.7%, 41.03+/-3.1%, 23.70+/-2.6% for baseline, PBS control, and IL-19-treated mice). Foam cell formation by macrophages and vascular smooth muscle cells (VSMC) is a hallmark event during atherosclerosis. Nothing has been reported regarding IL-19 effects on macrophage or VSMC lipid uptake; we therefore investigated whether IL-19 affects macrophage and VSMC cholesterol handling. Addition of IL-19 to wild-type bone marrow derived macrophages (BMDM) significantly promoted oxLDL uptake, conversely, BMDM from IL-19-/- mice had significantly less oxLDL uptake compared to wild-type BMDM. Addition of IL-19 to wild type BMDM significantly increased expression of scavenger receptor B1 (SR-B1), and decreased expression of inflammatory cytokines TNFα, IL-12b, MCP1. Interestingly, converse results were obtained with VSMC, as addition of IL-19 to wild-type VSMC decreased uptake of oxLDL ( p<0.05 ) and decreased expression of scavenger receptor CD36. VSMC isolated from IL-19-/- mice had increased uptake of oxLDL (p<0.0001). It is reported that M2 macrophages participate in plaque regression. IL-19 decreased IL-12b and significantly promoted the polarization of anti-inflammatory M2 phenotype in BMDM as evidenced by the increased expression of YM1 and IL-10 mRNA. These data demonstrate that IL-19 can inhibit progression of existing atherosclerotic plaque by modulating lipid metabolism in VSMC and macrophages and by promoting macrophage differentiation into an alternative, anti-inflammatory M2 phenotype.


2001 ◽  
Vol 280 (3) ◽  
pp. C709-C718 ◽  
Author(s):  
Tzong-Shyuan Lee ◽  
Lee-Young Chau

Oxidized low-density lipoprotein (oxLDL) is a potent inducer of apoptosis for vascular cells. In the present study, we demonstrate that the expression of death mediators, including p53, Fas, and Fas ligand (FasL) was substantially upregulated by oxLDL in cultured vascular smooth muscle cells (SMCs). The induction of these death mediators was time dependent and was accompanied by an increase in apoptotic death of SMCs following oxLDL treatment. Two oxysterols, 7β-hydroxycholesterol and 25-hydroxycholesterol, were also effective to induce the expression of death mediators and apoptosis. α-Tocopherol and deferoxamine significantly attenuated the induction of death mediators and cell death induced by oxLDL and oxysterols, suggesting that reactive oxygen species are involved in triggering the apoptotic event. Incubation of cells with FasL-neutralizing antibody inhibited the oxLDL-induced cell death up to 50%. Furthermore, caspase 8 and caspase 3 activities were induced time dependently in SMCs following oxLDL treatment. Collectively, these data suggest that the Fas/FasL death pathway is activated and responsible for, at least in part, the apoptotic death in vascular SMCs upon exposure to oxLDL.


2005 ◽  
Vol 202 (5) ◽  
pp. 663-671 ◽  
Author(s):  
Sergey Filippov ◽  
Gerald C. Koenig ◽  
Tae-Hwa Chun ◽  
Kevin B. Hotary ◽  
Ichiro Ota ◽  
...  

During pathologic vessel remodeling, vascular smooth muscle cells (VSMCs) embedded within the collagen-rich matrix of the artery wall mobilize uncharacterized proteolytic systems to infiltrate the subendothelial space and generate neointimal lesions. Although the VSMC-derived serine proteinases, plasminogen activator and plasminogen, the cysteine proteinases, cathepsins L, S, and K, and the matrix metalloproteinases MMP-2 and MMP-9 have each been linked to pathologic matrix-remodeling states in vitro and in vivo, the role that these or other proteinases play in allowing VSMCs to negotiate the three-dimensional (3-D) cross-linked extracellular matrix of the arterial wall remains undefined. Herein, we demonstrate that VSMCs proteolytically remodel and invade collagenous barriers independently of plasmin, cathepsins L, S, or K, MMP-2, or MMP-9. Instead, we identify the membrane-anchored matrix metalloproteinase, MT1-MMP, as the key pericellular collagenolysin that controls the ability of VSMCs to degrade and infiltrate 3-D barriers of interstitial collagen, including the arterial wall. Furthermore, genetic deletion of the proteinase affords mice with a protected status against neointimal hyperplasia and lumen narrowing in vivo. These studies suggest that therapeutic interventions designed to target MT1-MMP could prove beneficial in a range of human vascular disease states associated with the destructive remodeling of the vessel wall extracellular matrix.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiong Hu ◽  
Marco Sisignano ◽  
Roman Brecht ◽  
Natarajan Perumal ◽  
Carlo Angioni ◽  
...  

AbstractCytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44−/− and sEH−/− mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qi Wu ◽  
Yuanyang Chen ◽  
Zhiwei Wang ◽  
Xin Cai ◽  
Yanjia Che ◽  
...  

Mangiferin is a naturally occurring xanthone C-glycoside that is widely found in various plants. Previous studies have reported that mangiferin inhibits tumor cell proliferation and migration. Excessive proliferation and migration of vascular smooth muscle cells (SMCs) is associated with neointimal hyperplasia in coronary arteries. However, the role and mechanism of mangiferin action in neointimal hyperplasia is still unknown. In this study, a mouse carotid artery ligation model was established, and primary rat smooth muscle cells were isolated and used for mechanistic assays. We found that mangiferin alleviated neointimal hyperplasia, inhibited proliferation and migration of SMCs, and promoted platelets derive growth factors-BB- (PDGF-BB-) induced contractile phenotype in SMCs. Moreover, mangiferin attenuated neointimal formation by inhibiting mitochondrial fission through the AMPK/Drp1 signaling pathway. These findings suggest that mangiferin has the potential to maintain vascular homeostasis and inhibit neointimal hyperplasia.


2001 ◽  
Vol 65 (6) ◽  
pp. 556-560 ◽  
Author(s):  
Toshio Imanishi ◽  
Takuzo Hano ◽  
Ichiro Nishio ◽  
David KM Han ◽  
Stephen M Schwartz

Sign in / Sign up

Export Citation Format

Share Document