Hodgkin-Huxley and partially coupled inactivation models yield different voltage dependence of block

1997 ◽  
Vol 272 (4) ◽  
pp. H2013-H2022 ◽  
Author(s):  
S. Liu ◽  
R. L. Rasmusson

K+ channel blockers have been shown to exhibit complex time- and voltage-dependent effects on cardiac K+ currents. Whereas much attention has been focused on the state dependence of K+ channel block, how a particular channel model can alter the predicted time and voltage dependence of channel block remains unexplored. In this study, using two different model formalisms for the same cardiac transient outward current channel, we compare the effects of a theoretical open-state specific channel blocker on macroscopic currents. Model 1 is a Hodgkin-Huxley-like model, in which inactivation is an intrinsically voltage-dependent process and occurs independently of activation. Model 2 is a "partially coupled" model, in which inactivation is intrinsically voltage insensitive but requires channel activation before it can proceed. In the absence of drug (blocking agent), the two models reproduce the macroscopic current data. In the presence of blocking agent, the two models can differ substantially, with model 1 displaying much less block than model 2. We also examine simple mathematically convenient modifications to the Hodgkin-Huxley formalism, which reproduce some, but not all, of the use-dependent properties of block. Thus model formalism is important for analysis and simulation of state-specific drug-channel interactions.

Open Biology ◽  
2012 ◽  
Vol 2 (6) ◽  
pp. 120072 ◽  
Author(s):  
Claire A. Martin ◽  
Urszula Siedlecka ◽  
Kristin Kemmerich ◽  
Jason Lawrence ◽  
James Cartledge ◽  
...  

Brugada syndrome (BrS) is associated with ventricular tachycardia originating particularly in the right ventricle (RV). We explore electrophysiological features predisposing to such arrhythmic tendency and their possible RV localization in a heterozygotic Scn5a+/− murine model. Na v 1.5 mRNA and protein expression were lower in Scn5a+/− than wild-type (WT), with a further reduction in the RV compared with the left ventricle (LV). RVs showed higher expression levels of K v 4.2, K v 4.3 and KChIP2 in both Scn5a+/− and WT. Action potential upstroke velocity and maximum Na + current ( I Na ) density were correspondingly decreased in Scn5a+/− , with a further reduction in the RV. The voltage dependence of inactivation was shifted to more negative values in Scn5a+/−. These findings are predictive of a localized depolarization abnormality leading to slowed conduction. Persistent Na + current ( I pNa ) density was decreased in a similar pattern to I Na . RV transient outward current ( I to ) density was greater than LV in both WT and Scn5a+/− , and had larger time constants of inactivation. These findings were also consistent with the observation that AP durations were smallest in the RV of Scn5a+/− , fulfilling predictions of an increased heterogeneity of repolarization as an additional possible electrophysiological mechanism for arrhythmogenesis in BrS.


2005 ◽  
Vol 125 (4) ◽  
pp. 413-426 ◽  
Author(s):  
Hyeon-Gyu Shin ◽  
Zhe Lu

IRK1 (Kir2.1) inward-rectifier K+ channels exhibit exceedingly steep rectification, which reflects strong voltage dependence of channel block by intracellular cations such as the polyamine spermine. On the basis of studies of IRK1 block by various amine blockers, it was proposed that the observed voltage dependence (valence ∼5) of IRK1 block by spermine results primarily from K+ ions, not spermine itself, traversing the transmembrane electrical field that drops mostly across the narrow ion selectivity filter, as spermine and K+ ions displace one another during channel block and unblock. If indeed spermine itself only rarely penetrates deep into the ion selectivity filter, then a long blocker with head groups much wider than the selectivity filter should exhibit comparably strong voltage dependence. We confirm here that channel block by two molecules of comparable length, decane-bis-trimethylammonium (bis-QAC10) and spermine, exhibit practically identical overall voltage dependence even though the head groups of the former are much wider (∼6 Å) than the ion selectivity filter (∼3 Å). For both blockers, the overall equilibrium dissociation constant differs from the ratio of apparent rate constants of channel unblock and block. Also, although steady-state IRK1 block by both cations is strongly voltage dependent, their apparent channel-blocking rate constant exhibits minimal voltage dependence, which suggests that the pore becomes blocked as soon as the blocker encounters the innermost K+ ion. These findings strongly suggest the existence of at least two (potentially identifiable) sequentially related blocked states with increasing numbers of K+ ions displaced. Consequently, the steady-state voltage dependence of IRK1 block by spermine or bis-QAC10 should increase with membrane depolarization, a prediction indeed observed. Further kinetic analysis identifies two blocked states, and shows that most of the observed steady-state voltage dependence is associated with the transition between blocked states, consistent with the view that the mutual displacement of blocker and K+ ions must occur mainly as the blocker travels along the long inner pore.


1992 ◽  
Vol 263 (6) ◽  
pp. H1967-H1971 ◽  
Author(s):  
D. Y. Duan ◽  
B. Fermini ◽  
S. Nattel

In rabbit atrial myocytes, depolarization of the membrane results in a rapidly activating transient outward current (I(to)) that then decays to a sustained level. The sustained current (Isus) remains constant for at least 5 s during continued depolarization. The present study was designed to identify the ionic mechanism underlying Isus with the use of whole cell voltage-clamp techniques. After exposure to 2 mM 4-aminopyridine (4-AP), the 4-AP-sensitive transient outward current (I(to1)) was abolished, but Isus was unaffected. Isus was not blocked by the K+ channel blockers tetraethylammonium chloride and Ba2+, was not changed by increasing superfusate K+ concentration, and was still present when K+ was replaced by Cs+ in both the superfusate and the pipette. Isus was significantly reduced by the Cl- transport blockers 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The current-voltage relations of Isus showed outward rectification, and the reversal potential of Isus shifted with changes in the transmembrane Cl- gradient in the fashion expected for a Cl- current. We conclude that Isus in rabbit atrium is due to a noninactivating Cl- current which, unlike previously described cardiac Cl- currents, is manifest in the absence of exogenous stimulators of adenosine 3',5'-cyclic monophosphate formation, cytosolic Ca2+ transients, or cell swelling.


1989 ◽  
Vol 61 (2) ◽  
pp. 233-244 ◽  
Author(s):  
P. C. Schwindt ◽  
W. J. Spain ◽  
W. E. Crill

1. The function and ionic mechanism of a slow outward current were studied in large layer V neurons of cat sensorimotor cortex using an in vitro slice preparation and single microelectrode voltage clamp. 2. With Ca2+ influx blocked, a slow relaxation ("tail") of outward current followed either (1) repetitive firing evoked for 1 s or (2) a small 1-s depolarizing voltage clamp step that activated the persistent Na+ current of neocortical neurons, INaP. When a depolarization that activated INaP was maintained, an outward current gradually developed and increased in amplitude over a period of tens of seconds to several minutes. An outward tail current of similar duration followed repolarization. The slow outward current was abolished by TTX, indicating it depended on Na+ influx. 3. With Ca2+ influx blocked, the onset of the slow Na+-dependent outward current caused spike frequency adaptation during current-evoked repetitive firing. Following the firing, the decay of the Na+-dependent current caused a slow afterhyperpolarization (sAHP) and a long-lasting reduction of excitability. It also was responsible for habituation of the response to repeated identical current pulses. 4. The Na+-dependent tail current had properties expected of a K+ current. Membrane chord conductance increased during the tail, and tail amplitude was reduced or reversed by membrane potential hyperpolarization and raised extracellular K+ concentration [( K+]0). 5. The current tail was reduced reversibly by the K+ channel blockers TEA (5-10 mM), muscarine (5-20 microM), and norepinephrine (100 microM). These agents also resulted in a larger, more sustained inward current during the preceding step depolarization. Comparison of current time course before and after the application of blocking agents suggested that, in spite of its capability for slow buildup and decay, the onset of the Na+-dependent outward current occurs within 100 ms of an adequate step depolarization. 6. With Ca2+ influx blocked, extracellular application of dantrolene sodium (30 microM) had no clear effect on the current tail or the corresponding sAHP.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 272 (5) ◽  
pp. C1525-C1531 ◽  
Author(s):  
E. Romero ◽  
R. Sullivan

Megakaryocytes isolated from rat bone marrow express a voltage-dependent, outward K+ current with complex kinetics of activation and inactivation. We found that this current could be separated into at least two components based on differential responses to K+ channel blockers. One component, which exhibited features of the "transient" or "A-type" K+ current of excitable cells, was more strongly blocked by 4-aminopyridine (4-AP) than by tetrabutylammonium (TBA). This current, which we designated as "4-AP-sensitive" current, activated rapidly at potentials more positive than -40 mV and subsequently underwent rapid voltage-dependent inactivation. A separate current that activated slowly was blocked much more effectively by TBA than by 4-AP. This "TBA-sensitive" component, which resembled a typical delayed rectifier current, was much more resistant to voltage-dependent inactivation. The relative contribution of each of these components varied from cell to cell. The effect of charybdotoxin was similar to that of 4-AP. Our data indicate that the voltage-dependent K+ current of resting megakaryocytes is more complex than heretofore believed and support the emerging concept that megakaryocytes possess intricate electrophysiological properties.


2003 ◽  
Vol 122 (5) ◽  
pp. 485-500 ◽  
Author(s):  
Donglin Guo ◽  
Zhe Lu

Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding–unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for high-affinity binding of blockers. D172 appears to be located somewhat internal to the narrow K+ selectivity filter, whereas E224 and E299 form a ring at a more intracellular site. Using a series of alkyl-bis-amines of varying length as calibration, we investigated how the acidic residues in IRK1 interact with amine groups in the natural polyamines (putrescine, spermidine, and spermine) that cause rectification in cells. To block the pore, the leading amine of bis-amines of increasing length penetrates ever deeper into the pore toward D172, while the trailing amine in every bis-amine binds near a more intracellular site and interacts with E224 and E299. The leading amine in nonamethylene-bis-amine (bis-C9) makes the closest approach to D172, displacing the maximal number of K+ ions and exhibiting the strongest voltage dependence. Cells do not synthesize bis-amines longer than putrescine (bis-C4) but generate the polyamines spermidine and spermine by attaching an amino-propyl group to one or both ends of putrescine. Voltage dependence of channel block by the tetra-amine spermine is comparable to that of block by the bis-amines bis-C9 (shorter) or bis-C12 (equally long), but spermine binds to IRK1 with much higher affinity than either bis-amine does. Thus, counterintuitively, the multiple amines in spermine primarily confer the high affinity but not the strong voltage dependence of channel block. Tetravalent spermine achieves a stronger interaction with the pore by effectively behaving like a pair of tethered divalent cations, two amine groups in its leading half interacting primarily with D172, whereas the other two in the trailing half interact primarily with E224 and E299. Thus, nature has optimized not only the blocker but also, in a complementary manner, the channel for producing rapid, high-affinity, and strongly voltage-dependent channel block, giving rise to exceedingly sharp rectification.


1998 ◽  
Vol 111 (6) ◽  
pp. 795-805 ◽  
Author(s):  
Peter S. Pennefather ◽  
Wei Zhou ◽  
Thomas E. DeCoursey

A simple kinetic model is presented to explain the gating of a HERG-like voltage-gated K+ conductance described in the accompanying paper (Zhou, W., F.S. Cayabyab, P.S. Pennefather, L.C. Schlichter, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:781–794). The model proposes two kinetically distinct closing pathways, a rapid one favored by depolarization (deactivation) and a slow one favored by hyperpolarization (inactivation). The overlap of these two processes leads to a window current between −50 and +20 mV with a peak at −36 mV of ∼12% maximal conductance. The near absence of depolarization-activated outward current in microglia, compared with HERG channels expressed in oocytes or cardiac myocytes, can be explained if activation is shifted negatively in microglia. As seen with experimental data, availability predicted by the model was more steeply voltage dependent, and the midpoint more positive when determined by making the holding potential progressively more positive at intervals of 20 s (starting at −120 mV), rather than progressively more negative (starting at 40 mV). In the model, this hysteresis was generated by postulating slow and ultra-slow components of inactivation. The ultra-slow component takes minutes to equilibrate at −40 mV but is steeply voltage dependent, leading to protocol-dependent modulation of the HERG-like current. The data suggest that “deactivation” and “inactivation” are coupled through the open state. This is particularly evident in isotonic Cs+, where a delayed and transient outward current develops on depolarization with a decay time constant more voltage dependent and slower than the deactivation process observed at the same potential after a brief hyperpolarization.


1986 ◽  
Vol 87 (6) ◽  
pp. 833-855 ◽  
Author(s):  
J R Hume ◽  
A Uehara

Changes in membrane current in response to an elevation of [Na]i were studied in enzymatically dispersed frog atrial cells. Na loading by either intracellular dialysis or exposure to the Na ionophore monensin produces changes in membrane current that resemble the "creep currents" originally observed in cardiac Purkinje fibers during exposure to low-K solutions. Na loading induces a transient outward current during depolarizing voltage-clamp pulses, followed by an inward current in response to repolarization back to the holding potential. In contrast to cardiac Purkinje fibers, Na loading of frog atrial cells induces creep currents without accompanying transient inward currents. Creep currents induced by Na loading are insensitive to K channel antagonists like Cs and 4-aminopyridine; they are not influenced by doses of Ca channel antagonists that abolish iCa, but are sensitive to changes in [Ca]o or [Na]o. A comparison of the time course of development of inward creep currents are not tail currents associated with iCa. Inward creep currents can also be induced by experimental interventions that increase the iCa amplitude. Exposure to isoproterenol enhances the iCa amplitude and induces inward creep currents; both can be attenuated by Ca channel antagonists. Both inward and outward creep currents are blocked by low doses of La, independently of La's ability to block iCa. It is concluded that (a) creep currents are not mediated by voltage-gated Na, Ca, or K channels or by an electrogenic Na,K pump; (b) inward creep currents induced either by Na loading or in response to an increase in the amplitude of iCa are triggered by an elevation of [Ca]i; and (c) creep currents may be generated by either an electrogenic Na/Ca exchange mechanism or by a nonselective cation channel activated by [Ca]i.


1991 ◽  
Vol 261 (2) ◽  
pp. C310-C318 ◽  
Author(s):  
Z. S. Agus ◽  
I. D. Dukes ◽  
M. Morad

The modulation of the transient outward K+ current (Ito) by divalent cations was studied in enzymatically isolated rat ventricular myocytes with the whole cell patch-clamp technique. At holding potentials negative to -70 mV, 1 mM Cd2+ suppressed Ito, whereas, at potentials positive to -50 mV, the current was augmented. These effects were caused by shifts in the voltage dependence of both activation and inactivation of Ito toward more positive potentials. Cd2+ also slowed the activation kinetics of Ito by shifting the voltage dependence of its rate of activation, but the rate of inactivation was unaffected. Other divalent cations produced similar shifts but at markedly different concentrations. Thus, in the millimolar range, a rightward shift of approximately 20 mV was produced by 3 Co2+, 5 Ni2+, and 10 Ca2+, whereas 10 microM concentrations of Cu2+ and Zn2+ produced equivalent shifts. Similar effects were seen in hippocampal neurons with micromolar concentrations of Zn2+. Thus divalent cations have marked and specific effects on the kinetics and voltage dependence of Ito and may serve as a regulatory mechanism in its activation, particularly in cells with resting potentials positive to -60 mV.


Sign in / Sign up

Export Citation Format

Share Document