Effect of acidosis on tension and [Ca2+]iin rat cerebral arteries: is there a role for membrane potential?

1998 ◽  
Vol 274 (2) ◽  
pp. H655-H662 ◽  
Author(s):  
Hong-Li Peng ◽  
Peter E. Jensen ◽  
Holger Nilsson ◽  
Christian Aalkjær

The cellular mechanism responsible for the reduction of tension in cerebral small arteries to acidosis is not known. In this study the role of smooth muscle intracellular Ca2+ concentration ([Ca2+]i) and membrane potential for the relaxation to acidosis was investigated in isolated rat cerebral small arteries. Isometric force was measured simultaneously with [Ca2+]i(fura 2) or with membrane potential (intracellular microelectrodes), and acidosis was induced by increasing[Formula: see text] or reducing[Formula: see text] of the bathing solution. Both hypercapnic and normocapnic acidosis were associated with a reduction of intracellular pH [measured with 2′,7′-bis-(carboxyethyl)-5 (and -6)-carboxyfluorescein], caused relaxation, and reduced [Ca2+]i. However, whereas hypercapnic acidosis caused hyperpolarization, normocapnic acidosis was associated with depolarization. It is concluded that a reduction of [Ca2+]iis in part responsible for the direct effect of the acidosis on the vascular smooth muscle both during normo- and hypercapnia. The mechanism responsible for the reduction of [Ca2+]idiffers between the hypercapnic and normocapnic acidosis, being partly explained by hyperpolarization during hypercapnic acidosis, whereas it is seen despite depolarization during normocapnic acidosis.

2001 ◽  
Vol 280 (5) ◽  
pp. C1090-C1096 ◽  
Author(s):  
C. Wu ◽  
C. H. Fry

The role of Na+/Ca2+ exchange in regulating intracellular Ca2+ concentration ([Ca2+]i) in isolated smooth muscle cells from the guinea pig urinary bladder was investigated. Incremental reduction of extracellular Na+ concentration resulted in a graded rise of [Ca2+]i; 50–100 μM strophanthidin also increased [Ca2+]i. A small outward current accompanied the rise of [Ca2+]i in low-Na+ solutions (17.1 ± 1.8 pA in 29.4 mM Na+). The quantity of Ca2+ influx through the exchanger was estimated from the charge carried by the outward current and was ∼30 times that which is necessary to account for the rise of [Ca2+]i, after correction was made for intracellular Ca2+ buffering. Ca2+ influx through the exchanger was able to load intracellular Ca2+ stores. It is concluded that the level of resting [Ca2+]i is not determined by the exchanger, and under resting conditions (membrane potential −50 to −60 mV), there is little net flux through the exchanger. However, a small rise of intracellular Na+ concentration would be sufficient to generate significant net Ca2+ influx.


1997 ◽  
Vol 272 (5) ◽  
pp. H2241-H2249 ◽  
Author(s):  
J. P. Wesselman ◽  
R. Schubert ◽  
E. D. VanBavel ◽  
H. Nilsson ◽  
M. J. Mulvany

In small blood vessels, elevation of transmural pressure induces myogenic constrictions and smooth muscle depolarization. The role of calcium-activated K+ channels (KCa channels) in these responses was examined in cannulated rat mesenteric small arteries. Inner and outer diameter were continuously monitored with a video technique. Smooth muscle membrane potential was recorded simultaneously using microelectrodes. To test for myogenic responsiveness, the transmural pressure was changed stepwise in the range between 10 and 120 mmHg. Pressure elevation induced moderate myogenic responses and significant depolarization, from -54.5 +/- 0.4 (SE) mV (n = 56) at 10 mmHg to -47.3 +/- 1.8 mV (n = 12) at 120 mmHg. Norepinephrine (NE, 0.67 and 10 microM) induced constriction and vasomotion, augmented myogenic responsiveness, and shifted the pressure-membrane potential relation to more depolarized values. Blockade of the Kca channels with charybdotoxin (ChTX) suppressed the responsiveness to pressure. In the absence of ChTX, with 0.67 microM NE, pressure elevation from 10 to 120 mmHg induced depolarization from -46.9 +/- 1.0 (n = 16) to -35.8 +/- 0.7 (n = 12) mV, whereas because of the myogenic response, the diameter increased only by 7%. In the presence of ChTX, with 0.3 microM NE, pressure changed the membrane potential from -41.0 +/- 1.1 (n = 12) to -37.8 +/- 0.7 mV (n = 4), which was not significant, and the diameter increased by 28%. These results demonstrate that blockade of KCa channels reduces responsiveness to pressure elevation. This suggests that pressure may induce depolarization and concomitant myogenic responsiveness by closure of KCa channels.


2020 ◽  
Vol 117 (7) ◽  
pp. 3858-3866 ◽  
Author(s):  
Samantha C. O’Dwyer ◽  
Stephanie Palacio ◽  
Collin Matsumoto ◽  
Laura Guarina ◽  
Nicholas R. Klug ◽  
...  

The accepted role of the protein Kv2.1 in arterial smooth muscle cells is to form K+ channels in the sarcolemma. Opening of Kv2.1 channels causes membrane hyperpolarization, which decreases the activity of L-type CaV1.2 channels, lowering intracellular Ca2+ ([Ca2+]i) and causing smooth muscle relaxation. A limitation of this model is that it is based exclusively on data from male arterial myocytes. Here, we used a combination of electrophysiology as well as imaging approaches to investigate the role of Kv2.1 channels in male and female arterial myocytes. We confirmed that Kv2.1 plays a canonical conductive role but found it also has a structural role in arterial myocytes to enhance clustering of CaV1.2 channels. Less than 1% of Kv2.1 channels are conductive and induce membrane hyperpolarization. Paradoxically, by enhancing the structural clustering and probability of CaV1.2–CaV1.2 interactions within these clusters, Kv2.1 increases Ca2+ influx. These functional impacts of Kv2.1 depend on its level of expression, which varies with sex. In female myocytes, where expression of Kv2.1 protein is higher than in male myocytes, Kv2.1 has conductive and structural roles. Female myocytes have larger CaV1.2 clusters, larger [Ca2+]i, and larger myogenic tone than male myocytes. In contrast, in male myocytes, Kv2.1 channels regulate membrane potential but not CaV1.2 channel clustering. We propose a model in which Kv2.1 function varies with sex: in males, Kv2.1 channels control membrane potential but, in female myocytes, Kv2.1 plays dual electrical and CaV1.2 clustering roles. This contributes to sex-specific regulation of excitability, [Ca2+]i, and myogenic tone in arterial myocytes.


1989 ◽  
Vol 66 (6) ◽  
pp. 2533-2538 ◽  
Author(s):  
C. G. Murlas ◽  
C. A. Doupnik

We investigated the possible electrophysiological basis for the slow, prolonged force generation by airway smooth muscle (ASM) produced by leukotriene C4 (LTC4). Preparations of ASM were made from ferret trachea and placed in tissue microchambers for study. Some of these preparations were arranged so that force transducers and intracellular microelectrodes (with tip resistances of 30–80 M omega) could be used to measure isometric force and cell membrane potential (Em) simultaneously from ASM cells stimulated by LTC4. We found that ferret tracheal muscle was relatively sensitive to LTC4 and that this sensitivity was not significantly affected by atropine (1 microM), phentolamine (1 microM), propranolol (3 microM), and pyrilamine (1 microM). In a 1 nM solution of LTC4, Em was -54.0 +/- 1.2 mV from 18 impalements (n) from 6 animals (N) compared with a base-line value of -61.6 +/- 0.8 mV (n/N = 29/8, P less than 0.0005). This change did not lead to force generation, however. Higher concentrations of LTC4 led to progressive decreases in Em to which force generation was closely coupled. Concentrations greater than or equal to 70 nM led to phasic oscillations in Em of 0.6–0.8 Hz and 1.7 mV in amplitude, which were abolished by 10 microM verapamil, although the base-line Em was unaffected by this concentration. Although 300 nM LTE4 by itself caused only a small depolarization of ferret trachealis, it substantially antagonized the electromechanical responsiveness of this smooth muscle to LTC4. We conclude that ferret ASM is relatively sensitive to LTC4 and that there is an electrical basis for the slow, prolonged force generation caused by this mediator.


2007 ◽  
Vol 293 (6) ◽  
pp. L1406-L1418 ◽  
Author(s):  
Reinoud Gosens ◽  
Gerald L. Stelmack ◽  
Gordon Dueck ◽  
Mark M. Mutawe ◽  
Martha Hinton ◽  
...  

Contractile responses of airway smooth muscle (ASM) determine airway resistance in health and disease. Caveolae microdomains in the plasma membrane are marked by caveolin proteins and are abundant in contractile smooth muscle in association with nanospaces involved in Ca2+ homeostasis. Caveolin-1 can modulate localization and activity of signaling proteins, including trimeric G proteins, via a scaffolding domain. We investigated the role of caveolae in contraction and intracellular Ca2+ ([Ca2+]i) mobilization of ASM induced by the physiological muscarinic receptor agonist, acetylcholine (ACh). Human and canine ASM tissues and cells predominantly express caveolin-1. Muscarinic M3 receptors (M3R) and Gαq/11 cofractionate with caveolin-1-rich membranes of ASM tissue. Caveolae disruption with β-cyclodextrin in canine tracheal strips reduced sensitivity but not maximum isometric force induced by ACh. In fura-2-loaded canine and human ASM cells, exposure to methyl-β-cyclodextrin (mβCD) reduced sensitivity but not maximum [Ca2+]i induced by ACh. In contrast, both parameters were reduced for the partial muscarinic agonist, pilocarpine. Fluorescence microscopy revealed that mβCD disrupted the colocalization of caveolae-1 and M3R, but [ N-methyl-3H]scopolamine receptor-binding assay revealed no effect on muscarinic receptor availability or affinity. To dissect the role of caveolin-1 in ACh-induced [Ca2+]i flux, we disrupted its binding to signaling proteins using either a cell-permeable caveolin-1 scaffolding domain peptide mimetic or by small interfering RNA knockdown. Similar to the effects of mβCD, direct targeting of caveolin-1 reduced sensitivity to ACh, but maximum [Ca2+]i mobilization was unaffected. These results indicate caveolae and caveolin-1 facilitate [Ca2+]i mobilization leading to ASM contraction induced by submaximal concentrations of ACh.


2016 ◽  
Vol 37 (6) ◽  
pp. 2171-2184 ◽  
Author(s):  
Maria Sancho ◽  
Nina C Samson ◽  
Bjorn O Hald ◽  
Ahmed M Hashad ◽  
Sean P Marrelli ◽  
...  

The conducted vasomotor response reflects electrical communication in the arterial wall and the distance signals spread is regulated by three factors including resident ion channels. This study defined the role of inward-rectifying K+ channels (KIR) in governing electrical communication along hamster cerebral arteries. Focal KCl application induced a vasoconstriction that conducted robustly, indicative of electrical communication among cells. Inhibiting dominant K+ conductances had no attenuating effect, the exception being Ba2+ blockade of KIR. Electrophysiology and Q-PCR analysis of smooth muscle cells revealed a Ba2+-sensitive KIR current comprised of KIR2.1/2.2 subunits. This current was surprisingly small and when incorporated into a model, failed to account for the observed changes in conduction. We theorized a second population of KIR channels exist and consistent with this idea, a robust Ba2+-sensitive KIR2.1/2.2 current was observed in endothelial cells. When both KIR currents were incorporated into, and then inhibited in our model, conduction decay was substantive, aligning with experiments. Enhanced decay was ascribed to the rightward shift in membrane potential and the increased feedback arising from voltage-dependent-K+ channels. In summary, this study shows that two KIR populations work collaboratively to govern electrical communication and the spread of vasomotor responses along cerebral arteries.


2002 ◽  
Vol 92 (4) ◽  
pp. 1594-1602 ◽  
Author(s):  
Michele Sweeney ◽  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Shen Zhang ◽  
Ying Yu ◽  
...  

Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents ( I SOC) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+channels by Ni2+ decreased I SOC and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I SOC, enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.


2002 ◽  
Vol 282 (5) ◽  
pp. C1000-C1008 ◽  
Author(s):  
Kara L. Kopper ◽  
Joseph S. Adorante

In fura 2-loaded N1E-115 cells, regulation of intracellular Ca2+ concentration ([Ca2+]i) following a Ca2+ load induced by 1 μM thapsigargin and 10 μM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na+ dependent and inhibited by 5 mM Ni2+. In cells with normal intracellular Na+ concentration ([Na+]i), removal of bath Na+, which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unless cell Ca2+ buffer capacity was reduced. When N1E-115 cells were Na+ loaded using 100 μM veratridine and 4 μg/ml scorpion venom, the rate of the reverse mode of the Na+/Ca2+ exchanger was apparently enhanced, since an ∼4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loaded cells, we were able to demonstrate forward operation of the Na+/Ca2+ exchanger (net efflux of Ca2+) by observing increases (∼ 6 mM) in [Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could only be observed when a continuous ionomycin-induced influx of Ca2+ occurred. The voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used to measure changes in membrane potential. Ionomycin (1 μM) depolarized N1E-115 cells (∼25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250–500 μM benzamil. These data provide evidence for the presence of an electrogenic Na+/Ca2+ exchanger that is capable of regulating [Ca2+]i after release of Ca2+ from cell stores.


2008 ◽  
Vol 294 (3) ◽  
pp. H1183-H1187 ◽  
Author(s):  
Kristen M. Park ◽  
Mario Trucillo ◽  
Nicolas Serban ◽  
Richard A. Cohen ◽  
Victoria M. Bolotina

Store-operated channels (SOC) and store-operated Ca2+ entry are known to play a major role in agonist-induced constriction of smooth muscle cells (SMC) in conduit vessels. In microvessels the role of SOC remains uncertain, in as much as voltage-gated L-type Ca2+ (CaL2+) channels are thought to be fully responsible for agonist-induced Ca2+ influx and vasoconstriction. We present evidence that SOC and their activation via a Ca2+-independent phospholipase A2 (iPLA2)-mediated pathway play a crucial role in agonist-induced constriction of cerebral, mesenteric, and carotid arteries. Intracellular Ca2+ in SMC and intraluminal diameter were measured simultaneously in intact pressurized vessels in vitro. We demonstrated that 1) Ca2+ and contractile responses to phenylephrine (PE) in cerebral and carotid arteries were equally abolished by nimodipine (a CaL2+ inhibitor) and 2-aminoethyl diphenylborinate (an inhibitor of SOC), suggesting that SOC and CaL2+ channels may be involved in agonist-induced constriction of cerebral arteries, and 2) functional inhibition of iPLA2β totally inhibited PE-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries, whereas K+-induced Ca2+ influx and vasoconstriction mediated by CaL2+ channels were not affected. Thus iPLA2-dependent activation of SOC is crucial for agonist-induced Ca2+ influx and vasoconstriction in cerebral, mesenteric, and carotid arteries. We propose that, on PE-induced depletion of Ca2+ stores, nonselective SOC are activated via an iPLA2-dependent pathway and may produce a depolarization of SMC, which could trigger a secondary activation of CaL2+ channels and lead to Ca2+ entry and vasoconstriction.


2002 ◽  
Vol 282 (1) ◽  
pp. R131-R138 ◽  
Author(s):  
Arlin B. Blood ◽  
Yu Zhao ◽  
Wen Long ◽  
Lubo Zhang ◽  
Lawrence D. Longo

Recently, we reported that, whereas in cerebral arteries of the adult a majority of norepinephrine (NE)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) comes from release of the sarcoplasmic reticulum (SR) Ca2+ stores, in the fetus the SR Ca2+ stores are relatively small, and NE-induced increase in [Ca2+]i results mainly from activation of plasma membrane L-type Ca2+ channels (20). In an effort to establish further the role of L-type Ca2+ channels in the developing cerebral arteries, we tested the hypothesis that, in the fetus, increased reliance on plasmalemmal L-type Ca2+ channels is mediated, in part, by increased L-type Ca2+ channel density. We used3H-labeled (+)isopropyl-4-(2,1,3-benzoxadiazol-4-y1)-1,4-dihydro-(2,6-dimethyl-5-methoxycarbonyl)pyridine-3-carboxylate (PN200–110, isradipine) to measure L-type Ca2+ channel density (Bmax) in the cerebral arteries, common carotid artery (CCA), and descending aortae of fetal (∼140 gestation days), newborn (7–10 days), and adult sheep. In the cerebral and common carotid arteries, Bmax values (fmol/mg protein) of fetuses and newborns were significantly greater than those of adults. Western immunoblotting assay also revealed that the density of L-type Ca2+ channel protein in the cerebral arteries and CCA was about twofold greater in the fetus than the adult. Finally, compared with the adult, fetal cerebral arteries demonstrated a significantly greater maximum tension and [Ca2+]i in response to stimulation with the L-type Ca2+ channel agonist Bay K 8644. In addition, Bay K 8644-stimulated fetal vessels demonstrated a maximal tension and [Ca2+]isimilar to that observed in response to stimulation with 10−4 NE. These results support the idea that fetal cerebrovascular smooth muscle relies more on extracellular Ca2+ and L-type Ca2+ channels for contraction than does the adult and that this increased reliance is mediated, in part, by greater L-type Ca2+ channel density. This may have important implications in the regulation of cerebral blood flow in the developing organism.


Sign in / Sign up

Export Citation Format

Share Document