Z protein in hepatic uptake and esterification of long-chain fatty acids

1975 ◽  
Vol 228 (6) ◽  
pp. 1634-1640 ◽  
Author(s):  
S Mishkin ◽  
L Stein ◽  
G Fleischner ◽  
Z Gatmaitan ◽  
IM Arias

Fatty acids radioactivity was bound to Z protein in liver after administration of['3H]oleate to rats or to a perfused rat liver preparation. Pretreatment withflavaspidic acid (340 mumol/kg), a potent inhibitor of fatty acid binding to hepatic Zprotein in vitri, effectively reduced oleate radioactivity bound to Z by 90.2 plusor minus 4.3% and 85.0 plus or minus 6.2% in the intact rat and perfused liver, respectively. In spite of this effect, pretreatment of rats with flavaspidic acid did notalter plasma clearance, hepatic uptake, and esterification of ['3H]oleate. In contrast, in the perfused liver preparation, infusion of flavaspidic acid (340 mumol/kg)or bromosulphalein (360 mumol/kg) increased uptake of ['3H]oleate at least twofold,and oleate esterification was decreased by 15-30%. These results suggest that the binding of long-chain fatty acids to Z protein is not an obligatory step in their uptakeby the liver and that Z protein may be involved in fatty acid esterification.

1990 ◽  
Vol 266 (2) ◽  
pp. 435-439 ◽  
Author(s):  
D C Wilton

1. A new continuous fluorescence assay for phospholipase A2 is described which involves the displacement of the highly fluorescent fatty-acid probe 11-(dansylamino)undecanoic acid from rat liver fatty-acid-binding protein by long-chain fatty acids released as a result of phospholipase A2-catalysed hydrolysis of phospholipids. The initial rate of decrease in fluorescence is linearly related to enzyme activity. 2. The assay will detect enzyme activity down to about 10 pmol/min per ml and gives a linear response up to about 10 nmol/min per ml. 3. The assay will work with all phospholipids that have been tested including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and phosphatidylglycerol. Substrates carrying a net negative charge showed the highest rates of hydrolysis. 4. The assay will work, in principle, with an enzyme catalysing the release of long-chain fatty acids from a fatty-acylated substrate. This has been confirmed with pancreatic lipase and cholesterol esterase.


1997 ◽  
Vol 273 (2) ◽  
pp. G289-G295 ◽  
Author(s):  
H. Poirier ◽  
I. Niot ◽  
P. Degrace ◽  
M. C. Monnot ◽  
A. Bernard ◽  
...  

The effects of dietary oil intake and fatty acid infusions on the expression of intestinal and liver fatty acid-binding proteins (I-FABP and L-FABP, respectively) were investigated in the small intestine of mice. A daily force-feeding for 7 days with 0.2 ml sunflower oil specifically increased L-FABP mRNA and protein levels in duodenum and proximal jejunum. This upregulation was mediated in time- and dose-dependent manners by a minute quantity of linoleic acid, the main fatty acid found in sunflower oil. The L-FABP induction was only found with long-chain fatty acids, with the nonmetabolizable, substituted fatty acid alpha-bromopalmitate being far more active. A hormonally mediated effect is unlikely because long-chain fatty acids induced L-FABP mRNA in the Caco-2 cell line cultured in serum-free medium. Therefore, long-chain fatty acids are strong inducers of L-FABP gene expression in the small intestine. In contrast to data found in the rat, I-FABP gene expression appears to be unaffected by a lipid-enriched diet in the mouse.


Biochemistry ◽  
2002 ◽  
Vol 41 (17) ◽  
pp. 5453-5461 ◽  
Author(s):  
Hsin Wang ◽  
Yan He ◽  
Christopher D. Kroenke ◽  
Sarala Kodukula ◽  
Judith Storch ◽  
...  

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 682-682 ◽  
Author(s):  
Kayla Dillard ◽  
Morgan Coffin ◽  
Gabriella Hernandez ◽  
Victoria Smith ◽  
Catherine Johnson ◽  
...  

Abstract Objectives Non-alcoholic fatty liver disease (NAFLD) represents the major cause of pediatric chronic liver pathology in the United States. The objective of this study was to compare the relative effect of inclusion of isocaloric amounts of saturated medium-chain fatty acids (hydrogenated coconut oil), saturated long-chain fatty acids (lard) and unsaturated long-chain fatty acids (olive oil) on endpoints of NAFLD and insulin resistance. Methods Thirty-eight 15-d-old Iberian pigs were fed 1 of 4 diets containing (g/kg body weight × d) 1) control (CON; n = 8): 0 g fructose, 10.5 g fat, and 187 kcal metabolizable energy (ME), 2) lard (LAR; n = 10): 21.6 g fructose, 17.1 g fat (100% lard) and 299 kcal ME, 3) hydrogenated coconut oil (COCO; n = 10): 21.6 g fructose, 16.9 g fat (42.5% lard and 57.5% coconut oil) and 299 kcal ME, and 4) olive oil (OLV, n = 10): 21.6 g fructose, 17.1 g fat (43.5% lard and 56.5% olive oil) and 299 kcal ME, for 9 consecutive weeks. Body weight was recorded every 3 d. Serum markers of liver injury and dyslipidemia were measured on d 60 at 2 h post feeding, with all other serum measures assessed on d 70. Liver tissue was collected on d 70 for histology, triacylglyceride (TG) quantification, and metabolomics analysis. Results Tissue histology indicated the presence of steatosis in LAR, COCO and OLV compared with CON (P ≤ 0.001), with a further increase in in non-alcoholic steatohepatitis (NASH) in OLV and COCO compared with LAR (P ≤ 0.01). Alanine and aspartate aminotransferases were higher in COCO and OLV (P ≤ 0.01) than CON. All treatment groups had lower liver concentrations of methyl donor's choline and betaine versus CON, while bile acids were differentially changed (P ≤ 0.05). COCO had higher levels of TGs with less carbons (Total carbons < 52) than all other groups (P ≤ 0.05). Several long-chain acylcarnitines involved in fat oxidation were higher in OLV versus all other groups (P ≤ 0.05). Conclusions Inclusion of fats enriched in medium-chain saturated and long-chain unsaturated fatty acids in a high-fructose high-fat diet increased liver injury, compared with fats with a long-chain saturated fatty acid profile. Further research is required to investigate the mechanisms causing this difference in physiological response to these dietary fat sources. Funding Sources ARI, AcornSeekers.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


1991 ◽  
Vol 10 (3) ◽  
pp. 325-340 ◽  
Author(s):  
D. R. Webb ◽  
R. A. Sanders

Caprenin (CAP) is a triglyceride that primarily contains caprylic (C8:0), capric (C10:0), and behenic (C22:0) acids. This study was undertaken to determine whether or not CAP is qualitatively digested, absorbed, and rearranged like other dietary fats and oils that contain these medium-chain and very long-chain fatty acids. In vitro results showed that neat CAP, coconut oil (CO) and peanut oil (PO) were hydrolyzed by porcine pancreatic lipase. All of the neat triglycerides also were digested in vivo by both male and female rats. This was shown by the recovery of significantly more extractable lymphatic fat than with fat-free control animals and by the recovery of orally administered triglyceride-derived fatty acids in lymph triglycerides. However, substantially more PO (74%) and CO (51%) were recovered in lymph relative to CAP (10%). These quantitative differences are consistent with the fatty acid composition of each triglyceride and primary routes of fatty acid uptake. The 24-h lymphatic recovery of CAP-derived C8:0, C10:0, and C22:0 averaged 3.9%, 17.8%, and 11.2%, respectively, for male and female rats. The C8:0 and C10:0 results approximated those obtained with CO (2.0% and 16.3%, respectively). In contrast, the 24-h absorbability of C22:0 in CAP was significantly less than that seen in PO (55.4%). Finally, there was no evidence of significant rearrangement of the positions of fatty acids on glycerol during digestion and absorption. Those fatty acids recovered in lymphatic fat tended to occupy the same glyceride positions that they did in the neat administered oils. However, the lymph fats recovered from all animals dosed with fat emulsions were enriched with endogenous lymph fatty acids. It is concluded that CAP is qualitatively digested, absorbed, and processed like any dietary fat or oil that contains medium-chain and very long-chain fatty acids.


Sign in / Sign up

Export Citation Format

Share Document