Xanthine oxidoreductase in respiratory and cardiovascular disorders

2008 ◽  
Vol 294 (5) ◽  
pp. L830-L840 ◽  
Author(s):  
Adel Boueiz ◽  
Mahendra Damarla ◽  
Paul M. Hassoun

In addition to its critical role in purine metabolism, xanthine oxidoreductase (XOR) has been implicated in the development of tissue oxidative damage in a wide variety of respiratory and cardiovascular disorders such as acute lung injury, ischemia-reperfusion injury, atherosclerosis, heart failure, and arterial hypertension. Although much remains to be clarified about the regulation and signaling pathways of this enzyme, it is quite evident from abundant investigation in animal models and some human trials that XOR inhibition can favorably alter critical disease processes and impact outcomes. From promising bench-to-bedside data, a better understanding of this enigmatic enzyme is emerging. However, the positive findings related to XOR inhibition need to be confirmed in large-scale, well-designed clinical trials. This will hopefully provide new opportunities for therapeutic intervention. This article reviews the available evidence involving XOR in oxidative states with specific emphasis on respiratory and cardiovascular diseases.

2006 ◽  
Vol 291 (2) ◽  
pp. L129-L141 ◽  
Author(s):  
Daisuke Okutani ◽  
Monika Lodyga ◽  
Bing Han ◽  
Mingyao Liu

Acute inflammatory responses are one of the major underlying mechanisms for tissue damage of multiple diseases, such as ischemia-reperfusion injury, sepsis, and acute lung injury. By use of cellular and molecular approaches and transgenic animals, Src protein tyrosine kinase (PTK) family members have been identified to be essential for the recruitment and activation of monocytes, macrophages, neutrophils, and other immune cells. Src PTKs also play a critical role in the regulation of vascular permeability and inflammatory responses in tissue cells. Importantly, animal studies have demonstrated that small chemical inhibitors for Src PTKs attenuate tissue injury and improve survival from a variety of pathological conditions related to acute inflammatory responses. Further investigation may lead to the clinical application of these inhibitors as drugs for ischemia-reperfusion injury (such as stroke and myocardial infarction), sepsis, acute lung injury, and multiple organ dysfunction syndrome.


2020 ◽  
Vol 3 (3) ◽  
pp. 12
Author(s):  
Lijuan Li ◽  
Fei Zou

Cardiovascular diseases increase continually in the worldwide scale, and its specific pathogenesis has not been completely clear. The gas signal molecule hydrogen sulfide (H2S) is a new type of neuroactive substance, which plays many biological roles in many systems such as cardiovascular system. In recent years, a lot of research has confirmed H2S has myocardial protective effect on cardiovascular diseases such as atherosclerosis, ischemia-reperfusion injury, hypertension and heart failure. This paper reviews the research status of myocardial protective effect of H2S on cardiovascular diseases.


2001 ◽  
Vol 7 (S2) ◽  
pp. 72-73
Author(s):  
R. Lin ◽  
Y. Dong ◽  
J.V. Conte ◽  
A-L Lu-Chang ◽  
C. Wei

The reactive oxygen species (ROS) such as superoxide radical (O2), hydrogen peroxide (H2O2), and hydroxyl radical (OH), plays a critical role in the pathogenesis of hypertension, atherosclerosis, ischemia-reperfusion injury, stroke, myocardial infarction, and congestive heart failure. A recent study demonstrated that the frequency of mutation in a reporter gene increased in cortical DNA after forebrain ischemia-reperfusion. Eight DNA lesions that are characteristic of DNA damage mediated by free radicals were detected. Among the different oxidative-damage DNA products, 8-oXo-7,8-dihydrodeoxyguanine (8-oxoG) is the most stable and deleterious adduct. Recent studies demonstrated that human MutY homologue (hMYH) protein plays important role in repairing oxidative damage. to date, there is no information regarding the role of hMYH expression in human myocardium with congestive heart failure (CHF). Therefore, the current study designed to investigate the levels of hMYH expression and 8-oxoG in myocardium in the absence or presence of end-stage congestive heart failure. The hypothesis of this study is that increasing DNA damage such as 8-oxoG generation is associated with a reduction of hMYH expression in human myocardium with congestive heart failure.


2000 ◽  
Vol 80 (4) ◽  
pp. 1669-1699 ◽  
Author(s):  
Giuseppe Montrucchio ◽  
Giuseppe Alloatti ◽  
Giovanni Camussi

Platelet-activating factor (PAF) is a phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides. PAF acts via a specific receptor that is coupled with a G protein, which activates a phosphatidylinositol-specific phospholipase C. In this review we focus on the aspects that are more relevant for the cell biology of the cardiovascular system. The in vitro studies provided evidence for a role of PAF both as intercellular and intracellular messenger involved in cell-to-cell communication. In the cardiovascular system, PAF may have a role in embryogenesis because it stimulates endothelial cell migration and angiogenesis and may affect cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes. Moreover, PAF may contribute to modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes. In addition, experimental studies indicate that PAF has a critical role in the development of myocardial ischemia-reperfusion injury. Indeed, PAF cooperates in the recruitment of leukocytes in inflamed tissue by promoting adhesion to the endothelium and extravascular transmigration of leukocytes. The finding that human heart can produce PAF, expresses PAF receptor, and is sensitive to the negative inotropic action of PAF suggests that this mediator may have a role also in human cardiovascular pathophysiology.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Joshua G Travers ◽  
Fadia A Kamal ◽  
Michelle L Nieman ◽  
Michelle A Sargent ◽  
Jeffery D Molkentin ◽  
...  

Heart failure is a devastating disease characterized by chamber remodeling, interstitial fibrosis and reduced ventricular compliance. Cardiac fibroblasts are responsible for extracellular matrix homeostasis, however upon injury or pathologic stimulation, these cells transform to a myofibroblast phenotype and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation induces excess signaling through G protein βγ subunits and ultimately the pathologic activation of G protein-coupled receptor kinase 2 (GRK2). We hypothesized that Gβγ-GRK2 inhibition plays an important role in the cardiac fibroblast to attenuate pathologic myofibroblast activation and cardiac remodeling. To investigate this hypothesis, mice were subjected to ischemia/reperfusion (I/R) injury and treated with the small molecule Gβγ-GRK2 inhibitor gallein. While animals receiving vehicle demonstrated a reduction in overall cardiac function as measured by echocardiography, mice treated with gallein exhibited nearly complete preservation of cardiac function and reduced fibrotic scar formation. We next sought to establish the cell specificity of this compound by treating inducible cardiomyocyte- and activated fibroblast-specific GRK2 knockout mice post-I/R. Although we observed modest restoration in cardiac function in cardiomyocyte-specific GRK2 null mice, treatment of these mice with gallein resulted in further protection against myocardial dysfunction following injury, suggesting a functional role in other cardiac cell types, including fibroblasts. Activated fibroblast-specific GRK2 knockout mice were also subjected to ischemia/reperfusion injury; these animals displayed preserved myocardial function and reduced collagen deposition compared to littermate controls following injury. Furthermore, systemic Gβγ-GRK2 inhibition by gallein did not appear to confer further protection over activated fibroblast-specific GRK2 ablation alone. In summary, these findings suggest a potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathologic myofibroblast activation, interstitial fibrosis and heart failure progression.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yina Ma ◽  
Xiaoyue Hu ◽  
Daniel Pfau ◽  
Xiaohong Wu ◽  
Veena Rao ◽  
...  

Background: D-dopachrome tautomerase (DDT), the only homolog of macrophage migration inhibitory factor (MIF), is a cytokine highly expressed in cardiomyocytes and exerts autocrine-paracrine effects by signaling through the CD74 receptor. Endogenous DDT and MIF prevent acute ischemia-reperfusion injury and pressure overload-induced heart failure in mice. This study investigated whether endogenous cardiomyocyte DDT has a role in ischemic cardiomyopathy (ICM). Methods: LV tissue was obtained from patients with ICM during heart transplantation and from non-transplanted donor hearts. Plasma DDT concentrations were measured in heart failure outpatients with ICM. Cardiomyocyte-specific DDT knockout (cKO) and littermate control (CON) mice underwent MI or sham surgery. Serial echocardiography was performed to assess LV remodeling after MI or sham surgery. Tissue from the non-infarct region was analyzed 3 days and 4 weeks after MI or sham surgery for histology and molecular studies. Results: Cardiac DDT mRNA and protein expression were reduced in LV from patients transplanted for ICM (n=8). Plasma DDT concentrations below the median value were associated with worse survival in ICM outpatients (p<0.05, n=32). In mice, baseline LV function was similar in DDT cKO and CON after sham surgery and 3 days post-MI. However, DDT cKO mice developed more rapid LV dilatation and decreased LV ejection fraction and stroke volume as early as 1-week post-MI (n=4-6/group, all P<0.05). The DDT cKO mice had smaller cardiomyocyte cross-sectional area 4 weeks after MI (p <0.05), as well as early diminished phosphorylation of mTOR and S6-kinase (3 days post-MI). They also showed increased apoptosis 3 days post-MI and an early increase in p38 MAP kinase activation. Conclusion: Cardiomyocyte-derived DDT prevents adverse cardiac remodeling in ICM, potentially through modulating mTOR/S6 kinase (adaptive hypertrophy) and p38 MAP kinase (limiting apoptosis). Down-regulation of DDT in patients with ICM may contribute to the pathogenesis of advanced heart failure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui-Ling Lee ◽  
Po-Cheng Chang ◽  
Hung-Ta Wo ◽  
Hao-Tien Liu ◽  
Ming-Shien Wen ◽  
...  

Aims: Whether therapeutic hypothermia (TH) is proarrhythmic in preexisting failing hearts with acute ischemia–reperfusion (IR) injury is unknown. Additionally, the effectiveness of rotigaptide on improving conduction slowing in hearts with IR injury is ambiguous. We investigated the electrophysiological effects of TH and rotigaptide in failing rabbit hearts with acute IR injury and determined the underlying molecular mechanisms.Methods and Results: Heart failure was induced by right ventricular pacing (320 beats/min, 4 weeks). Rabbits with pacing-induced heart failure were randomly divided into TH (n = 14) and non-TH (n = 7) groups. The IR rabbit model was created by ligating the coronary artery for 60 min, followed by reperfusion for 15 min in vivo. Then, the hearts were excised quickly and Langendorff-perfused for simultaneous voltage and intracellular Ca2+ (Cai) optical mapping. Electrophysiological studies were conducted, and vulnerability to ventricular fibrillation (VF) was evaluated using pacing protocols. TH (33°C) was instituted after baseline studies, and electrophysiological studies were repeated. Rotigaptide (300 nM) was infused for 20 min, and electrophysiological studies were repeated under TH. Cardiac tissues were sampled for Western blotting. TH increased the dispersion and beat-to-beat variability of action potential duration (APD), aggravated conduction slowing, and prolonged Cai decay to facilitate spatially discordant alternans (SDA) and VF induction. Rotigaptide reduced the dispersion and beat-to-beat variability of APD and improved slowed conduction to defer the onset of arrhythmogenic SDA by dynamic pacing and elevate the pacing threshold of VF during TH. However, the effect of rotigaptide on TH-enhanced VF inducibility was statistically insignificant. TH attenuated IR-induced dysregulation of protein expression, but its functional role remained uncertain.Conclusion: Therapeutic hypothermia is proarrhythmic in failing hearts with acute IR injury. Rotigaptide improves TH-induced APD dispersion and beat-to-beat variability and conduction disturbance to defer the onset of arrhythmogenic SDA and elevate the VF threshold by dynamic pacing, but these beneficial electrophysiological effects are unable to suppress TH-enhanced VF inducibility significantly.


Sign in / Sign up

Export Citation Format

Share Document