scholarly journals Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells

2011 ◽  
Vol 301 (4) ◽  
pp. L461-L477 ◽  
Author(s):  
Linghui Zhang ◽  
Kevin Yu ◽  
Kyle W. Robert ◽  
Kristine M. DeBolt ◽  
Nankang Hong ◽  
...  

Rab38 is a rat Hermansky-Pudlak syndrome gene that plays an important role in surfactant homeostasis in alveolar type II (ATII) pneumocytes. We examined Rab38 function in regulating lamellar body (LB) morphology in ATII cells. Quantitative electron microscopy revealed that LBs in ATII cells were ∼77% larger in Rab38-null fawn-hooded hypertension (FHH) than control Sprague-Dawley (SD) rats. Rab38 protein expression was restricted in lung epithelial cells but was not found in primary endothelial cells. In SD ATII cells, Rab38 protein level gradually declined during 5 days in culture. Importantly, endogenous Rab38 was present in LB fractions purified from SD rat lungs, and transiently expressed enhanced green fluorescent protein (EGFP)-tagged Rab38 labeled only the limiting membranes of a subpopulation (∼30%) of LBs in cultured ATII cells. This selective targeting was abolished by point mutations to EGFP-Rab38 and was not shared by Rab7 and Rab4b, which also function in the ATII cells. Using confocal microscopy, we established a method for quantitative evaluation of the enlarged LB phenotype temporally preserved in cultured FHH ATII cells. A direct causal relationship was established when the enlarged LB phenotype was reserved and then rescued by transiently reexpressed EGFP-Rab38 in cultured FHH ATII cells. This rescuing effect was associated with dynamic EGFP-Rab38 targeting to and on LB limiting membranes. We conclude that Rab38 plays an indispensible role in maintaining LB morphology and surfactant homeostasis in ATII pneumocytes.

2003 ◽  
Vol 285 (3) ◽  
pp. L691-L700 ◽  
Author(s):  
Jason M. Roper ◽  
Rhonda J. Staversky ◽  
Jacob N. Finkelstein ◽  
Peter C. Keng ◽  
Michael A. O'Reilly

The unique morphology and cell-specific expression of surfactant genes have been used to identify and isolate alveolar type II epithelial cells. Because these attributes can change during lung injury, a novel method was developed for detecting and isolating mouse type II cells on the basis of transgenic expression of enhanced green fluorescence protein (EGFP). A line of transgenic mice was created in which EGFP was targeted to type II cells under control of the human surfactant protein (SP)-C promoter. Green fluorescent cells that colocalized by immunostaining with endogenous pro-SP-C were scattered throughout the parenchyma. EGFP was not detected in Clara cell secretory protein-expressing airway epithelial cells or other nonlung tissues. Pro-SP-C immunostaining diminished in lungs exposed to hyperoxia, consistent with decreased expression and secretion of intracellular precursor protein. In contrast, type II cells could still be identified by their intrinsic green fluorescence, because EGFP is not secreted. Type II cells could also be purified from single-cell suspensions of lung homogenates using fluorescence-activated cell sorting. Less than 1% of presorted cells exhibited green fluorescence compared with >95% of the sorted population. As expected for type II cells, ultrastructural analysis revealed that the sorted cells contained numerous lamellar bodies. SP-A, SP-B, and SP-C mRNAs were detected in the sorted population, but T1α and CD31 (platelet endothelial cell adhesion molecule) were not, indicating enrichment of type II epithelial cells. This method will be invaluable for detecting and isolating mouse type II cells under a variety of experimental conditions.


2020 ◽  
Author(s):  
Guangchun Han ◽  
Ansam Sinjab ◽  
Warapen Treekitkarnmongkol ◽  
Patrick Brennan ◽  
Kieko Hara ◽  
...  

ABSTRACTThe novel coronavirus SARS-CoV-2 was identified as the causative agent of the ongoing pandemic COVID 19. COVID-19-associated deaths are mainly attributed to severe pneumonia and respiratory failure. Recent work demonstrated that SARS-CoV-2 binds to angiotensin converting enzyme 2 (ACE2) in the lung. To better understand ACE2 abundance and expression patterns in the lung we interrogated our in-house single-cell RNA-sequencing dataset containing 70,085 EPCAM+ lung epithelial cells from paired normal and lung adenocarcinoma tissues. Transcriptomic analysis revealed a diverse repertoire of airway lineages that included alveolar type I and II, bronchioalveolar, club/secretory, quiescent and proliferating basal, ciliated and malignant cells as well as rare populations such as ionocytes. While the fraction of lung epithelial cells expressing ACE2 was low (1.7% overall), alveolar type II (AT2, 2.2% ACE2+) cells exhibited highest levels of ACE2 expression among all cell subsets. Further analysis of the AT2 compartment (n = 27,235 cells) revealed a number of genes co-expressed with ACE2 that are important for lung pathobiology including those associated with chronic obstructive pulmonary disease (COPD; HHIP), pneumonia and infection (FGG and C4BPA) as well as malarial/bacterial (CD36) and viral (DMBT1) scavenging which, for the most part, were increased in smoker versus light or non-smoker cells. Notably, DMBT1 was highly expressed in AT2 cells relative to other lung epithelial subsets and its expression positively correlated with ACE2. We describe a population of ACE2-positive AT2 cells that co-express pathogen (including viral) receptors (e.g. DMBT1) with crucial roles in host defense thus comprising plausible phenotypic targets for treatment of COVID-19.


2006 ◽  
Vol 80 (1) ◽  
pp. 332-341 ◽  
Author(s):  
Kathleen McGee-Estrada ◽  
Hung Fan

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a contagious lung cancer of sheep that arises from type II pneumocytes and Clara cells of the lung epithelium. Studies of the tropism of this virus have been hindered by the lack of an efficient system for viral replication in tissue culture. To map regulatory regions important for transcriptional activation, an in vivo footprinting method that couples dimethyl sulfate treatment and ligation-mediated PCR was performed in murine type II pneumocyte-derived MLE-15 cells infected with a chimeric Moloney murine leukemia virus driven by the JSRV enhancers (ΔMo+JS Mo-MuLV). In vivo footprints were found in the JSRV enhancers in two regions previously shown to be important for JSRV long terminal repeat (LTR) activity: a binding site for the lung-specific transcription factor HNF-3β and an E-box element in the distal enhancer adjacent to an NF-κB-like binding site. In addition, in vivo footprints were detected in two downstream motifs likely to bind C/EBP and NF-I. Mutational analysis of a JSRV LTR reporter construct (pJS21luc) revealed that the C/EBP binding site is critical for LTR activity, while the putative NF-I binding element is less important; elimination of these sites resulted in 70% and 40% drops in LTR activity, respectively. Electrophoretic mobility shift assays using nuclear extracts from MLE-15 murine Clara cell-derived mtCC1-2 cells with probes corresponding to the NF-I or C/EBP sites revealed several complexes. Antiserum directed against NF-IA, C/EBPα, or C/EBPβ supershifted the corresponding protein-DNA complexes, indicating that these isoforms, which are also important for the expression of several cellular lung-specific genes, may be important for JSRV expression in lung epithelial cells.


2008 ◽  
Vol 294 (2) ◽  
pp. L358-L367 ◽  
Author(s):  
Klaus Unfried ◽  
Ulrich Sydlik ◽  
Katrin Bierhals ◽  
Alexander Weissenberg ◽  
Josef Abel

Treatment of lung epithelial cells with different kinds of nano-sized particles leads to cell proliferation. Because bigger particles fail to induce this reaction, it is suggested that the special surface properties, due to the extremely small size of these kinds of materials, is the common principle responsible for this specific cell reaction. Here the activation of the protein kinase B (Akt) signaling cascade by carbon nanoparticles was investigated with regard to its relevance for proliferation. Kinetics and dose-response experiments demonstrated that Akt is specifically activated by nanoparticulate carbon particles in rat alveolar type II epithelial cells as well as in human bronchial epithelial cells. This pathway appeared to be dependent on epidermal growth factor receptor and β1-integrins. The activation of Akt by these receptors is known to be a feature of adhesion-dependent signaling. However, intracellular proteins described in this context (focal adhesion kinase pp125FAK and integrin-linked kinase) were not activated, indicating a specific signaling mechanism. Inhibitor studies demonstrate that nanoparticle-induced proliferation is mediated by phosphoinositide 3-kinases and Akt. Moreover, overexpression of mutant Akt, as well as pretreatment with an Akt inhibitor, reduced nanoparticle-specific ERK1/2 phosphorylation, which is decisive for nanoparticle-induced proliferation. With this report, we describe the activation of a pathway by carbon nanoparticles that was so far known to be triggered by ligand receptor binding or on cell adhesion to extracellular matrix proteins.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1079
Author(s):  
Manuela Zangrossi ◽  
Patrizia Romani ◽  
Probir Chakravarty ◽  
Colin D.H. Ratcliffe ◽  
Steven Hooper ◽  
...  

Late relapse of disseminated cancer cells is a common feature of breast and prostate tumors. Several intrinsic and extrinsic factors have been shown to affect quiescence and reawakening of disseminated dormant cancer cells (DDCCs); however, the signals and processes sustaining the survival of DDCCs in a foreign environment are still poorly understood. We have recently shown that crosstalk with lung epithelial cells promotes survival of DDCCs of estrogen receptor-positive (ER+) breast tumors. By using a lung organotypic system and in vivo dissemination assays, here we show that the TFEB-lysosomal axis is activated in DDCCs and that it is modulated by the pro-survival ephrin receptor EphB6. TFEB lysosomal direct targets are enriched in DDCCs in vivo and correlate with relapse in ER+ breast cancer patients. Direct coculture of DDCCs with alveolar type I-like lung epithelial cells and dissemination in the lung drive lysosomal accumulation and EphB6 induction. EphB6 contributes to survival, TFEB transcriptional activity, and lysosome formation in DDCCs in vitro and in vivo. Furthermore, signaling from EphB6 promotes the proliferation of surrounding lung parenchymal cells in vivo. Our data provide evidence that EphB6 is a key factor in the crosstalk between disseminated dormant cancer cells and the lung parenchyma and that the TFEB-lysosomal pathway plays an important role in the persistence of DDCCs.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


1995 ◽  
Vol 268 (1) ◽  
pp. L21-L26 ◽  
Author(s):  
D. M. Bukowski ◽  
S. M. Deneke ◽  
R. A. Lawrence ◽  
S. G. Jenkinson

Type II lung epithelial cells are different from other lung cell types in their means of processing and regulating intracellular glutathione (GSH) levels. In lung cell types, including endothelial cells, fibroblasts, smooth muscle cells, and macrophages, oxidants, sulfhydryl reagents, and electrophilic agents have been shown to induce cystine uptake and concomitantly increase GSH levels, suggesting that cysteine, formed by intracellular reduction of cystine, is a rate-limiting substrate for GSH synthesis. The cystine transport increase was reportedly due to increase in activity of a sodium-independent transport system designated xc-. We have now examined cultures of rat lung type II cells exposed to diethylmaleic acid and arsenite. Although a rise in cellular GSH occurred, cystine transport was not induced. Cystine transport in type II cells was found to differ from the xc- system previously described. Type II cell cystine transport is primarily sodium dependent and is inhibitable by aspartate as well as glutamate and homocysteate. We conclude that the type II cell differs from other lung cell types in both its cystine transport mechanism and method of GSH regulation.


Sign in / Sign up

Export Citation Format

Share Document