scholarly journals Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages

2015 ◽  
Vol 308 (10) ◽  
pp. L1058-L1067 ◽  
Author(s):  
Sung-Soo Jung ◽  
Jong-Seok Moon ◽  
Jin-Fu Xu ◽  
Emeka Ifedigbo ◽  
Stefan W. Ryter ◽  
...  

Inflammasomes are cytosolic protein complexes that promote the cleavage of caspase-1, which leads to the maturation and secretion of proinflammatory cytokines, including interleukin-1β (IL-1β) and IL-18. Among the known inflammasomes, the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)-dependent inflammasome is critically involved in the pathogenesis of various acute or chronic inflammatory diseases. Carbon monoxide (CO), a gaseous molecule physiologically produced in cells and tissues during heme catabolism, can act as an anti-inflammatory molecule and a potent negative regulator of Toll-like receptor signaling pathways. To date, the role of CO in inflammasome-mediated immune responses has not been fully investigated. Here, we demonstrated that CO inhibited caspase-1 activation and the secretion of IL-1β and IL-18 in response to lipopolysaccharide (LPS) and ATP treatment in bone marrow-derived macrophages. CO also inhibited IL-18 secretion in response to LPS and nigericin treatment, another NLRP3 inflammasome activation model. In contrast, CO did not suppress IL-18 secretion in response to LPS and poly(dA:dT), an absent in melanoma 2 (AIM2)-mediated inflammasome model. LPS and ATP stimulation induced the formation of complexes between NLRP3 and apoptosis-associated speck-like protein, or NLRP3 and caspase-1. CO treatment inhibited these molecular interactions that were induced by LPS and ATP. Furthermore, CO inhibited mitochondrial ROS generation and the decrease of mitochondrial membrane potential induced by LPS and ATP in macrophages. We also observed that the inhibitory effect of CO on the translocation of mitochondrial DNA into the cytosol was associated with suppression of cytokine secretion. Our results suggest that CO negatively regulates NLRP3 inflammasome activation by preventing mitochondrial dysfunction.

2020 ◽  
Vol 11 ◽  
Author(s):  
Yuqing Lin ◽  
Tianyu Luo ◽  
Anli Weng ◽  
Xiaodi Huang ◽  
Yanqing Yao ◽  
...  

Gallic acid is an active phenolic acid widely distributed in plants, and there is compelling evidence to prove its anti-inflammatory effects. NLRP3 inflammasome dysregulation is closely linked to many inflammatory diseases. However, how gallic acid affects the NLRP3 inflammasome remains unclear. Therefore, in the present study, we investigated the mechanisms underlying the effects of gallic acid on the NLRP3 inflammasome and pyroptosis, as well as its effect on gouty arthritis in mice. The results showed that gallic acid inhibited lactate dehydrogenase (LDH) release and pyroptosis in lipopolysaccharide (LPS)-primed and ATP-, nigericin-, or monosodium urate (MSU) crystal-stimulated macrophages. Additionally, gallic acid blocked NLRP3 inflammasome activation and inhibited the subsequent activation of caspase-1 and secretion of IL-1β. Gallic acid exerted its inhibitory effect by blocking NLRP3-NEK7 interaction and ASC oligomerization, thereby limiting inflammasome assembly. Moreover, gallic acid promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and reduced the production of mitochondrial ROS (mtROS). Importantly, the inhibitory effect of gallic acid could be reversed by treatment with the Nrf2 inhibitor ML385. NRF2 siRNA also abolished the inhibitory effect of gallic acid on IL-1β secretion. The results further showed that gallic acid could mitigate MSU-induced joint swelling and inhibit IL-1β and caspase 1 (p20) production in mice. Moreover, gallic acid could moderate MSU-induced macrophages and neutrophils migration into joint synovitis. In summary, we found that gallic acid suppresses ROS generation, thereby limiting NLRP3 inflammasome activation and pyroptosis dependent on Nrf2 signaling, suggesting that gallic acid possesses therapeutic potential for the treatment of gouty arthritis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yufei Luo ◽  
Bojun Xiong ◽  
Haiping Liu ◽  
Zehong Chen ◽  
Huihui Huang ◽  
...  

Koumine (KM), one of the primary constituents of Gelsemium elegans, has been used for the treatment of inflammatory diseases such as rheumatoid arthritis, but whether KM impacts the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome remains unknown. This study aimed to explore the inhibitory effect of KM on NLRP3 inflammasome activation and the underlying mechanisms both in vitro using macrophages stimulated with LPS plus ATP, nigericin or monosodium urate (MSU) crystals and in vivo using an MSU-induced peritonitis model. We found that KM dose-dependently inhibited IL-1β secretion in macrophages after NLRP3 inflammasome activators stimulation. Furthermore, KM treatment efficiently attenuated the infiltration of neutrophils and suppressed IL-1β production in mice with MSU-induced peritonitis. These results indicated that KM inhibited NLRP3 inflammasome activation, and consistent with this finding, KM effectively inhibited caspase-1 activation, mature IL-1β secretion, NLRP3 formation and pro-IL-1β expression in LPS-primed macrophages treated with ATP, nigericin or MSU. The mechanistic study showed that, KM exerted a potent inhibitory effect on the NLRP3 priming step, which decreased the phosphorylation of IκBα and p65, the nuclear localization of p65, and the secretion of TNF-α and IL-6. Moreover, the assembly of NLRP3 was also interrupted by KM. KM blocked apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and its oligomerization and hampered the NLRP3-ASC interaction. This suppression was attributed to the ability of KM to inhibit the production of reactive oxygen species (ROS). In support of this finding, the inhibitory effect of KM on ROS production was completely counteracted by H2O2, an ROS promoter. Our results provide the first indication that KM exerts an inhibitory effect on NLRP3 inflammasome activation associated with blocking the ROS/NF-κB/NLRP3 signal axis. KM might have potential clinical application in the treatment of NLRP3 inflammasome-related diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lindsey Mayes-Hopfinger ◽  
Aura Enache ◽  
Jian Xie ◽  
Chou-Long Huang ◽  
Robert Köchl ◽  
...  

AbstractThe NLRP3 inflammasome mediates the production of proinflammatory cytokines and initiates inflammatory cell death. Although NLRP3 is essential for innate immunity, aberrant NLRP3 inflammasome activation contributes to a wide variety of inflammatory diseases. Understanding the pathways that control NLRP3 activation will help develop strategies to treat these diseases. Here we identify WNK1 as a negative regulator of the NLRP3 inflammasome. Macrophages deficient in WNK1 protein or kinase activity have increased NLRP3 activation and pyroptosis compared with control macrophages. Mice with conditional knockout of WNK1 in macrophages have increased IL-1β production in response to NLRP3 stimulation compared with control mice. Mechanistically, WNK1 tempers NLRP3 activation by balancing intracellular Cl– and K+ concentrations during NLRP3 activation. Collectively, this work shows that the WNK1 pathway has a critical function in suppressing NLRP3 activation and suggests that pharmacological inhibition of this pathway to treat hypertension might have negative clinical implications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiantian Tang ◽  
Ping Li ◽  
Xinhui Zhou ◽  
Rui Wang ◽  
Xiuqin Fan ◽  
...  

The dysregulation of NLRP3 inflammasome plays a critical role in pathogenesis of various human inflammatory diseases, thus NLRP3 inflammasome activation must be tightly controlled at multiple levels. However, the underlying mechanism regulating NLRP3 inflammasome activation remains unclear. Herein, the effects of Tripartite motif-containing protein 65 (TRIM65) on NLRP3 inflammasome activation and the underlying molecular mechanism were investigated in vitro and in vivo. Inhibition or deletion of Trim65 could significantly strengthen agonist induced NLRP3 inflammasome activation in THP-1 cells and BMDMs, indicated by increased caspase-1 activation and interleukin-1β secretion. However, TRIM65 had no effect on poly (dA: dT)-induced AIM2 inflammasome activation or flagellin-induced IPAF inflammasome activation. Mechanistically, immunoprecipitation assays demonstrated that TRIM65 binds to NACHT domain of NLRP3, promotes lys48- and lys63- linked ubiquitination of NLRP3 and restrains the NEK7-NLRP3 interaction, thereby inhibiting NLRP3 inflammasome assembly, caspase-1 activation, and IL-1β secretion. In vivo, three models of inflammatory diseases were used to confirm the suppression role of TRIM65 in NLRP3 inflammasome activation. TRIM65-deficient mice had a higher production of IL-1β induced by lipopolysaccharide in sera, and more IL-1β secretion and neutrophil migration in the ascites, and more severity of joint swelling and associated IL-1β production induced by monosodium urate, suggesting that TRIM65 deficiency was susceptible to inflammation. Therefore, the data elucidate a TRIM65-dependent negative regulation mechanism of NLRP3 inflammasome activation and provide potential therapeutic strategies for the treatment of NLRP3 inflammasome-related diseases.


2019 ◽  
Vol 47 (01) ◽  
pp. 135-151 ◽  
Author(s):  
Wan-Chun Chang ◽  
Mu-Tzu Chu ◽  
Chih-Yuan Hsu ◽  
Yeong-Jian Jan Wu ◽  
Jing-Yi Lee ◽  
...  

Rhein, an anthraquinone drug, is a widely used traditional Chinese medicine. Rhein is a major bioactive metabolite of diacerein which has been approved for treating osteoarthritis with a good safety profile in humans. Gouty arthritis is an inflammatory disease characterized by urate crystal-induced NLRP3 inflammasome activation with up-regulated caspase-1 protease and IL-1[Formula: see text] in macrophages. Inhibition of the NLRP3 inflammasome formation has been considered as a potential therapeutic avenue for treating or preventing many inflammatory diseases. This study aimed to evaluate the anti-inflammatory effects of rhein on gouty arthritis. Rhein within the physiological levels of humans showed no toxicity on the cell viability and differentiation, but significantly decreased the production of IL-1[Formula: see text], TNF-[Formula: see text] and caspase-1 protease in urate crystal-activated macrophages. Compared to medium controls, rhein at the therapeutic concentration (2.5[Formula: see text][Formula: see text]g/mL) effectively inhibited IL-1[Formula: see text] production by 47% ([Formula: see text]). Rhein did not affect the mRNA levels of CASP1, NLRP3 and ASC, but suppressed the protein expression and enzyme activity of caspase-1. Immunofluorescence confocal microscopy further revealed that rhein suppressed the aggregation of ASC speck and inhibited the formation of NLRP3 inflammasome. Rhein of 5[Formula: see text][Formula: see text]g/mL significantly decreased the ASC speck to 36% ([Formula: see text]), and reduced the NLRP3 aggregates to 37.5% ([Formula: see text]). Our data demonstrate that rhein possesses pharmacological activity to suppress caspase-1 protease activity and IL-1[Formula: see text] production by interfering with the formation of NLRP3 multiprotein complex. These results suggest that rhein has therapeutic potential for treating NLRP3 inflammasome-mediated diseases such as gouty arthritis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A-Hyeon Lee ◽  
Hye-Yoon Shin ◽  
Jong-Hwi Park ◽  
Song Yi Koo ◽  
Sang Min Kim ◽  
...  

AbstractPro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α are mediated by the activation of various kinds of signaling pathways in the innate immune system. Particularly, NF-κB and NLRP3 inflammasome signaling are involved in the production and secretion of these cytokines. Each signaling is participated in the two steps necessary for IL-1β, a representative pro-inflammatory cytokine, to be processed into a form secreted by cells. In the priming step stimulated by LPS, pro-IL-1β is synthesized through NF-κB activation. Pro-IL-1β cleavages into mature IL-1β by formed NLRP3 inflammasome in the activation step induced by ATP. The mature form of IL-1β is subsequently secreted out of the cell, causing inflammation. Moreover, IL-6 and TNF-α are known to increase in NLRP3 inflammasome-mediated conditions. Here, we found that fucoxanthin, one of the major components of Phaeodactylum tricornutum, has an inhibitory effect on NF-κB and NLRP3 inflammasome activation induced by the combination of LPS and ATP in bone marrow-derived immune cells as well as astrocytes. Fucoxanthin, which is abundant in the EtOH fraction of Phaeodactylum tricornutum extracts, has shown to have less cell toxicity and found to decrease the production of major pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α. Fucoxanthin has also shown to suppress the expression of cleaved caspase-1 and the oligomerization of ASC, which are the main components of the NLRP3 inflammasome. Furthermore, phosphorylated IκBα and pro-IL-1β expression decreased in the presence of fucoxanthin, suggesting that fucoxanthin can negatively regulate the priming step of inflammasome signaling. Thus, our results provide reliable evidence that fucoxanthin may serve as a key candidate in the development of potential therapeutic agents for inflammatory diseases as well as neurodegenerative diseases caused by NF-κB and NLRP3 inflammasome activation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaolong Xu ◽  
Yuhong Guo ◽  
Jingxia Zhao ◽  
Ning Wang ◽  
Junying Ding ◽  
...  

Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO) via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50= 40.04 μM). Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of −5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1βformation from pro-IL-1βform. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1βsecretion in macrophages.


2021 ◽  
Author(s):  
Christopher Hoyle ◽  
Jack P Green ◽  
Stuart M Allan ◽  
David Brough ◽  
Eloise Lemarchand

AbstractThe NLRP3 inflammasome is a multi-protein complex that regulates the protease caspase-1 and subsequent interleukin (IL)-1β release from cells of the innate immune system, or microglia in the brain, in response to infection or injury. Derivatives of the metabolites itaconate and fumarate, dimethyl itaconate (DMI), 4-octyl itaconate (4OI) and dimethyl fumarate (DMF), limit both expression of IL-1β, and IL-1β release following NLRP3 inflammasome activation. However, the direct effects of these metabolite derivatives on NLRP3 inflammasome responses in macrophages and microglia require further investigation. Using murine bone marrow-derived macrophages, mixed glia and organotypic hippocampal slice cultures (OHSCs), we demonstrate that DMI and 4OI pre-treatment limited IL-1β, IL-6 and tumor necrosis factor production in response to lipopolysaccharide (LPS) priming, as well as inhibiting subsequent NLRP3 inflammasome activation. DMI, 4OI, DMF and monomethyl fumarate (MMF), another fumarate derivative, also directly inhibited biochemical markers of NLRP3 activation in LPS-primed macrophages, mixed glia and OHSCs, including ASC speck formation, caspase-1 activation, gasdermin D cleavage and IL-1β release. Finally, DMF, an approved treatment for multiple sclerosis, as well as DMI, 4OI and MMF, inhibited NLRP3 activation in macrophages in response to the phospholipid lysophosphatidylcholine, which is used to induce demyelination, suggesting a possible mechanism of action for DMF in multiple sclerosis through NLRP3 inhibition. Together, these findings reveal the importance of immunometabolic regulation for both the priming and activation steps of NLRP3 activation in macrophages and microglia. Furthermore, we highlight itaconate and fumarate derivatives as a potential therapeutic option in NLRP3-driven diseases, including in the brain.Summary statementWe show that itaconate and fumarate derivatives inhibit both the priming and activation steps of NLRP3 inflammasome responses in macrophages and microglia, revealing the importance of immunometabolic NLRP3 regulation.


2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NLRP3 inflammasome serves as a crucial component in an array of inflammatory conditions by boosting the secretion of pro-inflammatory cytokines: IL-1β and IL-18. Hence, a thorough investigation of the underlying mechanism of NLRP3 activation could ascertain the requisite directionality to the ongoing studies, along with the identification of the novel drug targets for the management of inflammatory diseases. Previous studies have established the vital role of the Acid sphingomyelinase (ASM)/Ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. ASM mediates the ceramide production by sphingomyelin hydrolysis. Furthermore, the participation of the ASM/Cer in NLRP3 activation remains ambiguous. Methods: We employed lipopoysaccharide (LPS)/Adenosine Triphosphate (ATP)-induced activation of NLRP3 inflammasome in J774A.1 cells as an in vitro inflammatory model. Results: We observed that imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity & increased ceramide accumulation, which indicates ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: Thioredoxin interacting protein (TXNIP), NLRP3, Caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activity and ceramide production. Further examination showed that the exogenous C2-ceramide-treated J774A.1 cells induce the overexpression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18. Furthermore, verapamil inhibited C2-Ceramide mediated TXNIP overexpression and NLRP3 inflammasome activation. These findings infer that TXNIP overexpression leads to Cer mediated NLRP3 inflammasome activation. Conclusion: Our study validated the crucial role of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


Sign in / Sign up

Export Citation Format

Share Document