scholarly journals Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling

2020 ◽  
Vol 11 ◽  
Author(s):  
Yuqing Lin ◽  
Tianyu Luo ◽  
Anli Weng ◽  
Xiaodi Huang ◽  
Yanqing Yao ◽  
...  

Gallic acid is an active phenolic acid widely distributed in plants, and there is compelling evidence to prove its anti-inflammatory effects. NLRP3 inflammasome dysregulation is closely linked to many inflammatory diseases. However, how gallic acid affects the NLRP3 inflammasome remains unclear. Therefore, in the present study, we investigated the mechanisms underlying the effects of gallic acid on the NLRP3 inflammasome and pyroptosis, as well as its effect on gouty arthritis in mice. The results showed that gallic acid inhibited lactate dehydrogenase (LDH) release and pyroptosis in lipopolysaccharide (LPS)-primed and ATP-, nigericin-, or monosodium urate (MSU) crystal-stimulated macrophages. Additionally, gallic acid blocked NLRP3 inflammasome activation and inhibited the subsequent activation of caspase-1 and secretion of IL-1β. Gallic acid exerted its inhibitory effect by blocking NLRP3-NEK7 interaction and ASC oligomerization, thereby limiting inflammasome assembly. Moreover, gallic acid promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and reduced the production of mitochondrial ROS (mtROS). Importantly, the inhibitory effect of gallic acid could be reversed by treatment with the Nrf2 inhibitor ML385. NRF2 siRNA also abolished the inhibitory effect of gallic acid on IL-1β secretion. The results further showed that gallic acid could mitigate MSU-induced joint swelling and inhibit IL-1β and caspase 1 (p20) production in mice. Moreover, gallic acid could moderate MSU-induced macrophages and neutrophils migration into joint synovitis. In summary, we found that gallic acid suppresses ROS generation, thereby limiting NLRP3 inflammasome activation and pyroptosis dependent on Nrf2 signaling, suggesting that gallic acid possesses therapeutic potential for the treatment of gouty arthritis.

2015 ◽  
Vol 308 (10) ◽  
pp. L1058-L1067 ◽  
Author(s):  
Sung-Soo Jung ◽  
Jong-Seok Moon ◽  
Jin-Fu Xu ◽  
Emeka Ifedigbo ◽  
Stefan W. Ryter ◽  
...  

Inflammasomes are cytosolic protein complexes that promote the cleavage of caspase-1, which leads to the maturation and secretion of proinflammatory cytokines, including interleukin-1β (IL-1β) and IL-18. Among the known inflammasomes, the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)-dependent inflammasome is critically involved in the pathogenesis of various acute or chronic inflammatory diseases. Carbon monoxide (CO), a gaseous molecule physiologically produced in cells and tissues during heme catabolism, can act as an anti-inflammatory molecule and a potent negative regulator of Toll-like receptor signaling pathways. To date, the role of CO in inflammasome-mediated immune responses has not been fully investigated. Here, we demonstrated that CO inhibited caspase-1 activation and the secretion of IL-1β and IL-18 in response to lipopolysaccharide (LPS) and ATP treatment in bone marrow-derived macrophages. CO also inhibited IL-18 secretion in response to LPS and nigericin treatment, another NLRP3 inflammasome activation model. In contrast, CO did not suppress IL-18 secretion in response to LPS and poly(dA:dT), an absent in melanoma 2 (AIM2)-mediated inflammasome model. LPS and ATP stimulation induced the formation of complexes between NLRP3 and apoptosis-associated speck-like protein, or NLRP3 and caspase-1. CO treatment inhibited these molecular interactions that were induced by LPS and ATP. Furthermore, CO inhibited mitochondrial ROS generation and the decrease of mitochondrial membrane potential induced by LPS and ATP in macrophages. We also observed that the inhibitory effect of CO on the translocation of mitochondrial DNA into the cytosol was associated with suppression of cytokine secretion. Our results suggest that CO negatively regulates NLRP3 inflammasome activation by preventing mitochondrial dysfunction.


2019 ◽  
Vol 47 (01) ◽  
pp. 135-151 ◽  
Author(s):  
Wan-Chun Chang ◽  
Mu-Tzu Chu ◽  
Chih-Yuan Hsu ◽  
Yeong-Jian Jan Wu ◽  
Jing-Yi Lee ◽  
...  

Rhein, an anthraquinone drug, is a widely used traditional Chinese medicine. Rhein is a major bioactive metabolite of diacerein which has been approved for treating osteoarthritis with a good safety profile in humans. Gouty arthritis is an inflammatory disease characterized by urate crystal-induced NLRP3 inflammasome activation with up-regulated caspase-1 protease and IL-1[Formula: see text] in macrophages. Inhibition of the NLRP3 inflammasome formation has been considered as a potential therapeutic avenue for treating or preventing many inflammatory diseases. This study aimed to evaluate the anti-inflammatory effects of rhein on gouty arthritis. Rhein within the physiological levels of humans showed no toxicity on the cell viability and differentiation, but significantly decreased the production of IL-1[Formula: see text], TNF-[Formula: see text] and caspase-1 protease in urate crystal-activated macrophages. Compared to medium controls, rhein at the therapeutic concentration (2.5[Formula: see text][Formula: see text]g/mL) effectively inhibited IL-1[Formula: see text] production by 47% ([Formula: see text]). Rhein did not affect the mRNA levels of CASP1, NLRP3 and ASC, but suppressed the protein expression and enzyme activity of caspase-1. Immunofluorescence confocal microscopy further revealed that rhein suppressed the aggregation of ASC speck and inhibited the formation of NLRP3 inflammasome. Rhein of 5[Formula: see text][Formula: see text]g/mL significantly decreased the ASC speck to 36% ([Formula: see text]), and reduced the NLRP3 aggregates to 37.5% ([Formula: see text]). Our data demonstrate that rhein possesses pharmacological activity to suppress caspase-1 protease activity and IL-1[Formula: see text] production by interfering with the formation of NLRP3 multiprotein complex. These results suggest that rhein has therapeutic potential for treating NLRP3 inflammasome-mediated diseases such as gouty arthritis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Shuang Li ◽  
Hao Wu ◽  
Dong Han ◽  
Sai Ma ◽  
Wensi Fan ◽  
...  

Sepsis, a systemic inflammatory response to infection, is the leading cause of death in the intensive care unit (ICU). Previous studies indicated that mesenchymal stromal cells (MSCs) might have therapeutic potential against sepsis. The current study was designed to investigate the effects of MSCs on sepsis and the underlying mechanisms focusing on inflammasome activation in macrophages. The results demonstrated that the bone marrow-derived mesenchymal stem cells (BMSCs) significantly increased the survival rate and organ function in cecal ligation and puncture (CLP) mice compared with the control-grouped mice. BMSCs significantly restricted NLRP3 inflammasome activation, suppressed the generation of mitochondrial ROS, and decreased caspase-1 and IL-1β activation when cocultured with bone marrow-derived macrophages (BMDMs), the effects of which could be abolished by Mito-TEMPO. Furthermore, the expression levels of caspase-1, IL-1β, and IL-18 in BMDMs were elevated after treatment with mitophagy inhibitor 3-MA. Thus, BMSCs exert beneficial effects on inhibiting NLRP3 inflammasome activation in macrophages primarily via both enhancing mitophagy and decreasing mitochondrial ROS. These findings suggest that restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS might be a crucial mechanism for MSCs to combat sepsis.


Author(s):  
Ying Xue ◽  
Ran Li ◽  
Ping Fang ◽  
Zheng-qin Ye ◽  
Yong Zhao ◽  
...  

Gouty arthritis is a common inflammatory disease characterized by monosodium urate (MSU) crystal induced nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activation with up-regulated caspase-1 protease and IL-1β in macrophages. Cucurbitacin B (CuB) is a tetracyclic triterpene that possesses a potential anti-inflammatory activity. However, the immunomodulatory and anti-inflammatory effects of CuB on gout have not been well characterized. Therefore, the purpose of the present study was to determine whether CuB exhibits anti-inflammatory effects on gout and to analyze the underlying molecular mechanism. We examined the effects of CuB on various stimuli-activated bone marrow-derived macrophages (BMDMs) and the mice model with MSU-induced acute gouty arthritis. Our results demonstrated that CuB effectively suppressed multiple stimuli-activated IL-1β secretion by interrupting NLRP3 inflammasome complex formation, inhibiting NLRP3 inflammasome activation and suppressing key enzymes of glycolysis in macrophages. Consistent with this, CuB pretreatment also ameliorated MSU-induced arthritis in vivo models of gout arthritis, manifested by reduced foot swelling and inflammatory cell infiltration. Taken together, our data provide the evidence that CuB is a NLRP3 inflammasome inhibitor with therapeutic potential for treating NLRP3 inflammasome-mediated diseases, especially gouty arthritis.


2021 ◽  
Author(s):  
Christopher Hoyle ◽  
Jack P Green ◽  
Stuart M Allan ◽  
David Brough ◽  
Eloise Lemarchand

AbstractThe NLRP3 inflammasome is a multi-protein complex that regulates the protease caspase-1 and subsequent interleukin (IL)-1β release from cells of the innate immune system, or microglia in the brain, in response to infection or injury. Derivatives of the metabolites itaconate and fumarate, dimethyl itaconate (DMI), 4-octyl itaconate (4OI) and dimethyl fumarate (DMF), limit both expression of IL-1β, and IL-1β release following NLRP3 inflammasome activation. However, the direct effects of these metabolite derivatives on NLRP3 inflammasome responses in macrophages and microglia require further investigation. Using murine bone marrow-derived macrophages, mixed glia and organotypic hippocampal slice cultures (OHSCs), we demonstrate that DMI and 4OI pre-treatment limited IL-1β, IL-6 and tumor necrosis factor production in response to lipopolysaccharide (LPS) priming, as well as inhibiting subsequent NLRP3 inflammasome activation. DMI, 4OI, DMF and monomethyl fumarate (MMF), another fumarate derivative, also directly inhibited biochemical markers of NLRP3 activation in LPS-primed macrophages, mixed glia and OHSCs, including ASC speck formation, caspase-1 activation, gasdermin D cleavage and IL-1β release. Finally, DMF, an approved treatment for multiple sclerosis, as well as DMI, 4OI and MMF, inhibited NLRP3 activation in macrophages in response to the phospholipid lysophosphatidylcholine, which is used to induce demyelination, suggesting a possible mechanism of action for DMF in multiple sclerosis through NLRP3 inhibition. Together, these findings reveal the importance of immunometabolic regulation for both the priming and activation steps of NLRP3 activation in macrophages and microglia. Furthermore, we highlight itaconate and fumarate derivatives as a potential therapeutic option in NLRP3-driven diseases, including in the brain.Summary statementWe show that itaconate and fumarate derivatives inhibit both the priming and activation steps of NLRP3 inflammasome responses in macrophages and microglia, revealing the importance of immunometabolic NLRP3 regulation.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110181
Author(s):  
Rongrong Bai ◽  
Yue Lang ◽  
Jie Shao ◽  
Yu Deng ◽  
Reyisha Refuhati ◽  
...  

Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.


2019 ◽  
Vol 147 ◽  
pp. 104348 ◽  
Author(s):  
Jiasi Wu ◽  
Yu Luo ◽  
Qing Jiang ◽  
Sheng Li ◽  
Wenge Huang ◽  
...  

2021 ◽  
Vol 5 (5) ◽  
pp. 1523-1534
Author(s):  
Johan Courjon ◽  
Océane Dufies ◽  
Alexandre Robert ◽  
Laurent Bailly ◽  
Cédric Torre ◽  
...  

Abstract Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient’s evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


Sign in / Sign up

Export Citation Format

Share Document