Postnatal stimulation of rat surfactant protein A synthesis by dexamethasone

1989 ◽  
Vol 257 (2) ◽  
pp. L137-L143 ◽  
Author(s):  
J. Floros ◽  
D. S. Phelps ◽  
H. P. Harding ◽  
S. Church ◽  
J. Ware

The effects of postnatal dexamethasone treatment in vivo on the synthesis of surfactant protein A (SP-A) were examined at the protein and RNA levels. Rats ranging from 1 day old to adult were injected with 200 micrograms of dexamethasone/kg body wt or with vehicle alone and were killed 24 h after injection. One portion of the lung was metabolically labeled with [35S]methionine, the proteins immunoprecipitated using an antiserum to SP-A, and analyzed electrophoretically. Both newly synthesized intracellular and secreted SP-A levels were increased by dexamethasone, reaching averages of 2.3 and 4.5 times control values, respectively. Another portion of the lung tissue was used for RNA analysis. SP-A mRNA levels were also elevated an average of 1.4 times control values by hormone treatment. Dose-response experiments using 16-day-old pups showed that both total SP-A, as measured by enzyme-linked immunosorbent assay, and total SP-A mRNA levels were elevated with dexamethasone treatment, reaching maximal stimulation at 2 mg. We conclude that postnatal dexamethasone treatment in vivo results in increased levels of both newly synthesized SP-A and SP-A mRNA, suggesting that pretranslational events may in part contribute to this process.

1996 ◽  
Vol 80 (5) ◽  
pp. 1560-1567 ◽  
Author(s):  
W. Y. Su ◽  
T. Gordon

The surfactant layer covering the gas-exchange region of the lung serves as the initial site of interaction with inhaled oxidant gases. Among the endogenous compounds potentially vulnerable to oxidative injury are surfactant proteins. This study focused on the effect of ozone on surfactant protein A (SP-A) function, content, and gene expression. To determine the time course of response to ozone, guinea pigs were exposed to 0.2-0.8 parts/million (ppm) ozone for 6 h and were killed up to 120 h postexposure. To determine the effect of repeated exposure, animals were exposed to 0.8 ppm ozone for 6 h/day and were killed on days 3 and 5. A significant increase in surfactant's ability to modulate the respiratory burst induced by phorbol 12-myristate 13-acetate in naive macrophages was observed at 24 h after a single 0.8 ppm ozone exposure. Because neutralizing antibodies to SP-A blunted this stimulatory effect, we hypothesized that ozone enhanced the modulatory role of SP-A in macrophage function. This alteration in function was accompanied by an influx of inflammatory cells and only marginal changes in SP-A levels as determined by an enzyme-linked immunosorbent assay. No significant changes in steady-state levels of SP-A mRNA were observed after single or repeated exposure to ozone. Thus the inflammation that accompanies in vivo ozone exposure may result in a change in the structure and thus functional role of SP-A in modulating macrophage activity.


1997 ◽  
Vol 272 (5) ◽  
pp. L996-L1004 ◽  
Author(s):  
S. G. Kremlev ◽  
T. M. Umstead ◽  
D. S. Phelps

Surfactant lipids inhibit cytokine production by immune cells, and surfactant protein A (SP-A) stimulates it. By enzyme-linked immunosorbent assay and mRNA blotting, we studied proinflammatory cytokine production by the monocytic cell line THP-1. SP-A caused increases in tumor necrosis factor (TNF)-alpha within 1 h, peaking at 4 h and then declining. Interleukin (IL)-1 beta increased and stayed elevated for 24 h. SP-A stimulated IL-8 also, peaking at 4 h, rapidly declining, and peaking again at 24 h. SP-A-dependent changes were detected for IL-6, but at higher SP-A doses. mRNA levels for TNF-alpha and IL-1 beta increased in response to SP-A, peaking within 2 h. The increases in TNF-alpha mRNA and protein induced by SP-A were inhibited by surfactant lipids. For IL-1 beta and IL-8, the lipids either had no inhibitory influence or inhibited less than for TNF-alpha. This suggests that the ability of macrophages to participate in inflammatory reactions is enhanced by SP-A alone or by mixtures of lipids and SP-A containing more SP-A than in normal surfactant, as occurs in many conditions leading to inflammation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidan Liu ◽  
Chaim Z. Aron ◽  
Cullen M. Grable ◽  
Adrian Robles ◽  
Xiangli Liu ◽  
...  

AbstractLevels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A−/−) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A−/− mice compared to wild type mice. Gavage of neonatal SP-A−/− mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A−/− mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


1992 ◽  
Vol 262 (1) ◽  
pp. L63-L68 ◽  
Author(s):  
R. S. Oosting ◽  
J. F. Van Iwaarden ◽  
L. Van Bree ◽  
J. Verhoef ◽  
L. M. Van Golde ◽  
...  

This study focused on the question of whether exposure of surfactant protein A (SP-A) to ozone affected properties of this protein that may be involved in regulating alveolar type II cell and alveolar macrophage functions. In vitro exposure of human or canine SP-A to ozone reduced the ability of this protein to inhibit phorbol-ester induced secretion of [3H]phosphatidylcholine by alveolar type II cells in culture. Ozone-exposed human SP-A showed a decreased ability to enhance phagocytosis of herpes simplex virus and to stimulate superoxide anion production by alveolar macrophages. Experiments with elastase showed that ozone-exposed canine SP-A was more susceptible to proteolysis. A conformational change of the protein could underlie this phenomenon. Surfactant isolated from ozone-exposed rats (0.4 ppm ozone for 12 h) was also less able to stimulate superoxide anion production by alveolar macrophages than surfactant from control rats, which suggested that SP-A in vivo was also susceptible to ozone. The results of this study suggest that SP-A-alveolar cell interactions can be inhibited by ozone exposure, which may contribute to the toxicity of ozone in the lungs.


2002 ◽  
Vol 282 (3) ◽  
pp. L386-L393 ◽  
Author(s):  
Jonathan M. Klein ◽  
Troy A. McCarthy ◽  
John M. Dagle ◽  
Jeanne M. Snyder

Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3–5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P199-P199
Author(s):  
Deng Yuqin ◽  
Zezhang Tao ◽  
Yonggang Kong

Problem The aim of this study was to examine if allergic rhinitis and nasal polyposis are associated with the level of surfactant protein-A. Methods Sinus mucosal biopsies were performed in patients with allergic rhinitis (n= 15), nasal polyposis (n=21) and controls (n= 10). Immunolocalization of surfactant protein was performed with antibodies to SP-A using Streptavidin Peroxidase Conjugated Method and indirect immunofluorescence method. Blood serums were obtained from three subjects in each group for enzyme-linked immunosorbent assay (ELISA) analysis of surfactant protein-A. Results By ELISA, AR (n =15) and NP (n = 21) showed significantly decreased levels of SP-A when compared with controls (n= 10), although these two groups were not statistically significant. Immunohistochemical investigation showed intense SP-A staining in the nasal epithelium of each groups, but weak staining in patients with AR and NP. Conclusion We report for the first time the expression of SP-A in both diseased and normal nasal mucosa using the indirect immunofluorescence method. There was an inverse relation between surfactant protein-A levels and symptoms and signs of rhinitis in patients with AR and NP. Significance SP-A may play a defensive role in the chronic inflammatory diseases of upper airway. Understanding the exact role of SP-A in the upper airway diseases will help develop novel treatment approaches for sinonasal pathoses.


2020 ◽  
Vol 8 (4) ◽  
pp. 577 ◽  
Author(s):  
Elisabeth Schicke ◽  
Zoltán Cseresnyés ◽  
Knut Rennert ◽  
Vanessa Vau ◽  
Karoline Frieda Haupt ◽  
...  

Pneumonia is the leading cause of hospitalization worldwide. Besides viruses, bacterial co-infections dramatically exacerbate infection. In general, surfactant protein-A (SP-A) represents a first line of immune defense. In this study, we analyzed whether influenza A virus (IAV) and/or Staphylococcus aureus (S. aureus) infections affect SP-A expression. To closely reflect the situation in the lung, we used a human alveolus-on-a-chip model and a murine pneumonia model. Our results show that S. aureus can reduce extracellular levels of SP-A, most likely attributed to bacterial proteases. Mono-epithelial cell culture experiments reveal that the expression of SP-A is not directly affected by IAV or S. aureus. Yet, the mRNA expression of SP-A is strongly down-regulated by TNF-α, which is highly produced by professional phagocytes in response to bacterial infection. By using the human alveolus-on-a-chip model, we show that the down-regulation of SP-A is strongly dependent on macrophages. In a murine model of pneumonia, we can confirm that S. aureus decreases SP-A levels in vivo. These findings indicate that (I) complex interactions of epithelial and immune cells induce down-regulation of SP-A expression and (II) bacterial mono- and super-infections reduce SP-A expression in the lung, which might contribute to a severe outcome of bacterial pneumonia.


1992 ◽  
Vol 262 (6) ◽  
pp. L765-L772 ◽  
Author(s):  
M. Ikegami ◽  
J. F. Lewis ◽  
B. Tabor ◽  
E. D. Rider ◽  
A. H. Jobe

Surfactant protein A (SP-A) metabolism was studied in vivo in 33 preterm ventilated lambs at 138 +/- 1 days gestational age by measuring recoveries of exogenously administered surfactant containing both radiolabeled SP-A and labeled saturated phosphatidylcholine (Sat PC) given via the trachea at birth. Endogenously secreted SP-A was also labeled with [35S]methionine and followed over 24 h. The exogenously labeled SP-A left the alveolar pool more rapidly than did Sat PC over the first 5 h of life (P less than 0.05), and both exogenously labeled SP-A and Sat PC were detected within lamellar bodies by 2 h, indicating uptake from the airspaces. The quantity of SP-A in alveolar washes increased about twofold from birth to 5 h of age, whereas alveolar Sat PC pools were constant over 24 h. The SP-A endogenously labeled with [35S]methionine was recovered at highest specific activities in the alveolar washes at 10 and 45 min after birth with no labeled SP-A detectable in lamellar body fractions until 2 h. The curve for endogenous SP-A labeling of lamellar bodies was similar to that for exogenous labeling, indicating that SP-A was initially secreted by a pathway independent of lamellar bodies with subsequent SP-A labeling of lamellar bodies. The kinetics of SP-A metabolism were very different than for Sat PC in preterm lambs.


1993 ◽  
Vol 264 (5) ◽  
pp. L431-L437 ◽  
Author(s):  
A. Wali ◽  
M. F. Beers ◽  
C. Dodia ◽  
S. I. Feinstein ◽  
A. B. Fisher

Synthesis and secretion of surfactant protein A (SP-A) were studied in the isolated perfused rat lung using Trans35S-label (approximately 85% methionine, 15% cysteine) in the perfusate with or without 1 mM ATP or 0.1 mM 8-bromoadenosine 3',5',-cyclic monophosphate (8-BrcAMP) for up to 6 h of perfusion. By enzyme-linked immunosorbent assay, the SP-A content was 36 +/- 0.3% of total protein in extracellular surfactant and 10.8 +/- 1.9% of total protein in lamellar bodies of control lungs; these relativr proportions were maintained in the presence of ATP or 8-BrcAMP. Incorporation of [35S]methionine (cysteine) into the surfactant and lamellar body protein fraction could be detected at 4 h of perfusion. At 6 h, specific activity of total protein [disintegrations per minute (dpm)/micrograms)] was significantly increased in both the surfactant (54%) and lamellar body fractions (30%) under the influence of either secretagogue compared with control conditions. In the presence of ATP, there was a significant increase in the SP-A immunoprecipitable counts of 61 and 72% in extra- and intracellular compartments, respectively. However, no significant change was observed in the relative abundance of SP-A mRNA between control and secretagogue-treated lungs. This dissociation of SP-A mRNA abundance and label incorporation into protein indicates that alteration in translational efficiency or posttranslational factors may be involved in the secretagogue-induced stimulation of SP-A synthesis.


Sign in / Sign up

Export Citation Format

Share Document