Effect of endocytosis inhibitors on alveolar clearance of albumin, immunoglobulin G, and SP-A in rabbits

1994 ◽  
Vol 266 (5) ◽  
pp. L544-L552 ◽  
Author(s):  
R. H. Hastings ◽  
J. R. Wright ◽  
K. H. Albertine ◽  
R. Ciriales ◽  
M. A. Matthay

Protein in the alveolar space may be cleared by endocytosis and degradation inside alveolar epithelial cells, by transcytosis across the alveolar epithelium, or by restricted diffusion through the epithelium. The relative contributions of these three pathways to clearance of large quantities of protein from the air spaces is not known. This study investigated the effects of monensin and nocodazole, agents which inhibit endocytosis in cell culture, on alveolar epithelial protein transport in anesthetized rabbits. There was evidence that monensin and nocodazole inhibited endocytosis by the alveolar epithelium in vivo. Nocodazole increased the number of vesicles in the alveolar epithelium and capillary endothelium. Monensin increased vesicle density in the endothelium. These results suggested that the inhibitors disrupted microtubules or interrupted cellular membrane traffic in the lung. Both inhibitors decreased lung parenchymal uptake of immunoreactive human albumin from the air spaces. Monensin and nocodazole inhibited albumin uptake in cultured alveolar type II cells. Monensin increased the amount of 125I-labeled surfactant protein A associated with the lungs, compared with the quantity remaining in the air space 2 h after instillation. Although the drugs decreased alveolar epithelial protein uptake, they did not decrease alveolar clearance of 125I-labeled immunoglobulin G or 131I-labeled albumin in anesthetized rabbits. Thus monensin- and nocodazole-sensitive protein-uptake pathways do not account for most alveolar protein clearance when the distal air spaces are filled with a protein solution.

1997 ◽  
Vol 273 (4) ◽  
pp. L797-L806 ◽  
Author(s):  
Heimo Mairbäurl ◽  
Ralf Wodopia ◽  
Sigrid Eckes ◽  
Susanne Schulz ◽  
Peter Bärtsch

A reduced cation reabsorption across the alveolar epithelium decreases water reabsorption from the alveoli and could diminish clearing accumulated fluid. To test whether hypoxia restricts cation transport in alveolar epithelial cells, cation uptake was measured in rat lung alveolar type II pneumocytes (AII cells) in primary culture and in A549 cells exposed to normoxia and hypoxia. In AII and A549 cells, hypoxia caused a[Formula: see text]-dependent inhibition of the Na-K pump, of Na-K-2Cl cotransport, and of total and amiloride-sensitive22Na uptake. Nifedipine failed to prevent hypoxia-induced transport inhibition in both cell types. In A549 cells, the inhibition of the Na-K pump and Na-K-2Cl cotransport occurred within ∼30 min of hypoxia, was stable >20 h, and was reversed by 2 h of reoxygenation. There was also a reduction in cell membrane-associated Na-K-ATPase and a decrease in Na-K-2Cl cotransport flux after full activation with calyculin A, indicating a decreased transport capacity. [14C]serine incorporation into cell proteins was reduced in hypoxic A549 cells, but inhibition of protein synthesis with cycloheximide did not reduce ion transport. In AII and A549 cells, ATP levels decreased slightly, and ADP and the ATP-to-ADP ratio were unchanged after 4 h of hypoxia. In A549 cells, lactate, intracellular Na, and intracellular K were unchanged. These results indicate that hypoxia inhibits apical Na entry pathways and the basolateral Na-K pump in A549 cells and rat AII pneumocytes in culture, indicating a hypoxia-induced reduction of transepithelial Na transport and water reabsorption by alveolar epithelium. If similar changes occur in vivo, the impaired cation transport across alveolar epithelial cells might contribute to the formation of hypoxic pulmonary edema.


2015 ◽  
Vol 8 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Julia M. Scordo ◽  
Daren L. Knoell ◽  
Jordi B. Torrelles

Tuberculosis (TB) is a disease that kills one person every 18 s. TB remains a global threat due to the emergence of drug-resistant Mycobacterium tuberculosis (M.tb) strains and the lack of an efficient vaccine. The ability of M.tb to persist in latency, evade recognition following seroconversion, and establish resistance in vulnerable populations warrants closer examination. Past and current research has primarily focused on examination of the role of alveolar macrophages and dendritic cells during M.tb infection, which are critical in the establishment of the host response during infection. However, emerging evidence indicates that the alveolar epithelium is a harbor for M.tb and critical during progression to active disease. Here we evaluate the relatively unexplored role of the alveolar epithelium as a reservoir and also its capacity to secrete soluble mediators upon M.tb exposure, which influence the extent of infection. We further discuss how the M.tb-alveolar epithelium interaction instigates cell-to-cell crosstalk that regulates the immune balance between a proinflammatory and an immunoregulatory state, thereby prohibiting or allowing the establishment of infection. We propose that consideration of alveolar epithelia provides a more comprehensive understanding of the lung environment in vivo in the context of host defense against M.tb.


Author(s):  
Ali Gibran ◽  
Runzhen Zhao ◽  
Mo Zhang ◽  
Krishan G. Jain ◽  
Jianjun Chang ◽  
...  

ABSTRACTCOVID-19, SARS, and MERS are featured by fibrinolytic dysfunction. To test the role of the fibrinolytic niche in the regeneration of alveolar epithelium, we compared the self-renewing capacity of alveolar epithelial type 2 (AT2) cells and its differentiation to AT1 cells between wild type (wt) and fibrinolytic niche deficient mice (Plau−/− and Serpine1Tg). A significant reduction in both proliferation and differentiation of deficient AT2 cells was observed in vivo and in 3D organoid cultures. This decrease was mainly restored by uPA derived A6 peptide, a binding fragment to CD44 receptors. The proliferative and differential rate of CD44+ AT2 cells was greater than that of CD44− controls. There was a reduction in transepithelial ion transport in deficient monolayers compared to wt cells. Moreover, we found a marked suppression in total AT2 cells and CD44+ subpopulation in lungs from brain dead patients with acute respiratory distress syndrome (ARDS) and a mouse model infected by influenza viruses. Thus, we demonstrate that the fibrinolytic niche can regulate AT2-mediated homeostasis and regeneration via a novel uPA-A6-CD44+-ENaC cascade.


2020 ◽  
Vol 10 (1_suppl) ◽  
pp. 50-58
Author(s):  
Emel Baloglu ◽  
Gabriel Nonnenmacher ◽  
Anna Seleninova ◽  
Lena Berg ◽  
Kalpana Velineni ◽  
...  

Reabsorption of excess alveolar fluid is driven by vectorial Na+-transport across alveolar epithelium, which protects from alveolar flooding and facilitates gas exchange. Hypoxia inhibits Na+-reabsorption in cultured cells and in-vivo by decreasing activity of epithelial Na+-channels (ENaC), which impairs alveolar fluid clearance. Inhibition also occurs during in-vivo hypoxia in humans and laboratory animals. Signaling mechanisms that inhibit alveolar reabsorption are poorly understood. Because cellular adaptation to hypoxia is regulated by hypoxia-inducible transcription factors (HIF), we tested whether HIFs are involved in decreasing Na+-transport in hypoxic alveolar epithelium. Expression of HIFs was suppressed in cultured rat primary alveolar epithelial cells (AEC) with shRNAs. Hypoxia (1.5% O2, 24 h) decreased amiloride-sensitive transepithelial Na+-transport, decreased the mRNA expression of α-, β-, and γ-ENaC subunits, and reduced the amount of αβγ-ENaC subunits in the apical plasma membrane. Silencing HIF-2α partially prevented impaired fluid reabsorption in hypoxic rats and prevented the hypoxia-induced decrease in α- but not the βγ-subunits of ENaC protein expression resulting in a less active form of ENaC in hypoxic AEC. Inhibition of alveolar reabsorption also caused pulmonary vasoconstriction in ventilated rats. These results indicate that a HIF-2α-dependent decrease in Na+-transport in hypoxic alveolar epithelium decreases alveolar reabsorption. Because susceptibles to high-altitude pulmonary edema (HAPE) have decreased Na+-transport even in normoxia, inhibition of alveolar reabsorption by hypoxia at high altitude might further impair alveolar gas exchange. Thus, aggravated hypoxemia might further enhance hypoxic pulmonary vasoconstriction and might subsequently cause HAPE.


1989 ◽  
Vol 256 (3) ◽  
pp. C688-C693 ◽  
Author(s):  
J. M. Cheek ◽  
K. J. Kim ◽  
E. D. Crandall

Because the pulmonary alveolar epithelium separates air spaces from a fluid-filled compartment, it is expected that this barrier would be highly resistant to the flow of solutes and water. Investigation of alveolar epithelial resistance has been limited due to the complex anatomy of adult mammalian lung. Previous efforts to study isolated alveolar epithelium cultured on porous substrata yielded leaky monolayers. In this study, alveolar epithelial cells isolated from rat lungs and grown on tissue culture-treated Nucleopore filters resulted in tight monolayers with transepithelial resistance greater than 2,000 omega.cm2. Changes in bioelectric properties of these alveolar epithelial monolayers in response to ouabain, amiloride, and terbutaline are consistent with active sodium transport across a polarized barrier. 22Na flux measurements under short-circuit conditions directly confirm net transepithelial absorption of sodium by alveolar epithelial cells in the apical to basolateral direction, comparable to the observed short-circuit current (4.37 microA/cm2). The transport properties of these tight monolayers may be representative of the characteristics of the mammalian alveolar epithelial barrier in vivo.


1956 ◽  
Vol 2 (3) ◽  
pp. 241-252 ◽  
Author(s):  
H. E. Karrer

The general architecture of capillary and alveolar walls of the mouse lung was studied by means of the electron microscope. In order to minimize tissue damage and to improve the cutting properties of embeddings, several modifications in the tissue processing methods were adopted. These modifications were: fixation by infusion, a prolonged time of dehydration, of impregnation, and of polymerization, the use of acetone for dehydration, ammonium sulfide treatment of the fixed and washed tissue, and an elevated (80°C.) polymerization temperature combined with the use of prepolymerized methacrylate. The generally favorable effects of these modified methods upon preservation and cutting properties of embedded tissue are discussed. Both capillary endothelium and alveolar epithelium were found continuous and without pores. The endothelium was seen to be thinnest in those portions that were adjacent to alveolar air spaces. Two morphological "types" of alveolar epithelial cells were found. One protruded into the alveolar lumen with its thick portion containing the nucleus. The other was often located in a niche of the alveolar wall, and contained peculiar dark inclusions amidst numerous mitochondria. Both were attenuated at their periphery to form the thin epithelial layer. The layer between endothelium and epithelium was designated as basement membrane. It was seen to be generally thin and structureless, but was found thickened in some areas where it also contained collagen fibrils.


2020 ◽  
Vol 21 (9) ◽  
pp. 3075 ◽  
Author(s):  
Matthias Ochs ◽  
Jan Hegermann ◽  
Elena Lopez-Rodriguez ◽  
Sara Timm ◽  
Geraldine Nouailles ◽  
...  

Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research.


2012 ◽  
Vol 302 (11) ◽  
pp. L1167-L1178 ◽  
Author(s):  
Charles A. Downs ◽  
Lisa H. Kriener ◽  
Ling Yu ◽  
Douglas C. Eaton ◽  
Lucky Jain ◽  
...  

β-Adrenergic receptors (β-AR) increase epithelial sodium channel (ENaC) activity to promote lung fluid clearance. However, the effect of selective β-AR agonist on highly selective cation (HSC) channels or nonselective cation (NSC) channels in alveolar type 1 (T1) and type 2 (T2) cells is unknown. We hypothesized that stimulation with β1-AR agonist (denopamine) or β2-AR agonist (terbutaline) would increase HSC and/or NSC channel activity in alveolar epithelial cells. We performed single-channel measurements from T1 and T2 cells accessed from rat lung slices. Terbutaline (20 μM) increased HSC ENaC activity (open probability, NPo) in T1 (from 0.96 ± 0.61 to 1.25 ± 0.71, n = 5, P <0.05) and T2 cells (from 0.28 ± 0.14 to 1.0 ± 0.30, n = 8, P = 0.02). Denopamine (20 μM) increased NSC NPo in T1 cells (from 0.34 ± 0.09 to 0.63 ± 0.14, n = 7, P = 0.02) and in T2 cells (from 0.47 ± 0.09 to 0.68 ± 0.10, P = 0.004). In vivo X-ray imaging of lung fluid clearance and ICI 118,551 selective inhibition of β2-ARs confirmed patch-clamp findings. cAMP concentrations increased following treatment with denopamine or terbutaline ( n = 3, P < 0.002). The effects of systemic (intraperitoneal, IP) and local (intratracheal, IT) modes of delivery on lung fluid clearance were assessed. IT delivery of denopamine promoted alveolar flooding, whereas IP delivery promoted delayed fluid clearance. In summary, β-AR agonists differentially regulate HSC and NSC in T1 and T2 cells to promote lung fluid clearance in vivo, and the mode of drug delivery is critical for maximizing β-AR agonist efficacy.


1994 ◽  
Vol 266 (2) ◽  
pp. L138-L147 ◽  
Author(s):  
R. L. Lubman ◽  
E. D. Crandall

In this study, we investigated the polarized distribution of Na(+)-H+ antiport activity in alveolar epithelial cell monolayers. Rat alveolar type II pneumocytes were grown on detachable tissue culture-treated Nuclepore filters. The membrane filters, with their adherent intact alveolar epithelial cell monolayers, were mounted in a cuvette designed to contain two fluid compartments separated by the monolayer. Cells were loaded with the pH-sensitive dye 2',7'-biscarboxyethyl-5,6-carboxylfluorescein and intracellular pH (pHi) measured spectrofluorometrically. Monolayers were studied at ambient temperature on days 3–4 in culture, coincident with the development of high tissue resistance (RT > or = 2000 omega.cm2). Cells were incubated in HCO(3-)-free Na+ buffer [(in mM) 140 NaCl, 6 HEPES, pH 7.4] and acidified by NH3 prepulse. Rates of realkalinization (JH+) were calculated as the product of the initial rate of recovery (dpHi/dt) and the intracellular buffer capacity (beta i). Under control conditions, recovery occurred with an initial JH+ of 28.4 mM/min. When 100 microM dimethylamiloride (DMA), an amiloride analogue with enhanced specificity for inhibiting the Na(+)-H+ antiporter, was present in the basolateral fluid, recovery was inhibited by > 90%. Conversely, when the monolayers were acidified in Na+ buffer containing DMA (100 microM) in the apical fluid, acidification and recovery were identical to control. Recovery from acidification was inhibited by basolateral DMA with a one-half maximal inhibitory concentration (IC50) of 100 nm and by basolateral amiloride with an IC50 of 10 microns. Recovery was completely inhibited by omission of Na+ from the basolateral fluid, but omission of Na+ from apical fluid had no effect. We conclude that Na(+)-H+ antiport activity is located exclusively on the basolateral surface of these alveolar epithelial cell monolayers, where it most likely represents the high-amiloride affinity isoform of the Na(+)-H+ antiporter, NHE-1. The Na(+)-H+ antiporter, asymmetrically distributed to the basolateral surface of the polarized alveolar epithelium, contributes to intracellular homeostasis in alveolar pneumocytes and may also play a role in signal transduction in these cells.


2003 ◽  
Vol 284 (2) ◽  
pp. L247-L259 ◽  
Author(s):  
Kwang-Jin Kim ◽  
Asrar B. Malik

Alveolar lining fluid normally contains proteins of important physiological, antioxidant, and mucosal defense functions [such as albumin, immunoglobulin G (IgG), secretory IgA, transferrin, and ceruloplasmin]. Because concentrations of plasma proteins in alveolar fluid can increase in injured lungs (such as with permeability edema and inflammation), understanding how alveolar epithelium handles protein transport is needed to develop therapeutic measures to restore alveolar homeostasis. This review provides an update on recent findings on protein transport across the alveolar epithelial barrier. The use of primary cultured rat alveolar epithelial cell monolayers (that exhibit phenotypic and morphological traits of in vivo alveolar epithelial type I cells) has shown that albumin and IgG are absorbed via saturable processes at rates greater than those predicted by passive diffusional mechanisms. In contrast, secretory component, the extracellular portion of the polymeric immunoglobulin receptor, is secreted into alveolar fluid. Transcytosis involving caveolae and clathrin-coated pits is likely the main route of alveolar epithelial protein transport, although relative contributions of these internalization steps to overall protein handling of alveolar epithelium remain to be determined. The specific pathways and regulatory mechanisms responsible for translocation of proteins across lung alveolar epithelium and regulation of the cognate receptors (e.g., 60-kDa albumin binding protein and IgG binding FcRn) expressed in alveolar epithelium need to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document