scholarly journals THE ULTRASTRUCTURE OF MOUSE LUNG GENERAL ARCHITECTURE OF CAPILLARY AND ALVEOLAR WALLS

1956 ◽  
Vol 2 (3) ◽  
pp. 241-252 ◽  
Author(s):  
H. E. Karrer

The general architecture of capillary and alveolar walls of the mouse lung was studied by means of the electron microscope. In order to minimize tissue damage and to improve the cutting properties of embeddings, several modifications in the tissue processing methods were adopted. These modifications were: fixation by infusion, a prolonged time of dehydration, of impregnation, and of polymerization, the use of acetone for dehydration, ammonium sulfide treatment of the fixed and washed tissue, and an elevated (80°C.) polymerization temperature combined with the use of prepolymerized methacrylate. The generally favorable effects of these modified methods upon preservation and cutting properties of embedded tissue are discussed. Both capillary endothelium and alveolar epithelium were found continuous and without pores. The endothelium was seen to be thinnest in those portions that were adjacent to alveolar air spaces. Two morphological "types" of alveolar epithelial cells were found. One protruded into the alveolar lumen with its thick portion containing the nucleus. The other was often located in a niche of the alveolar wall, and contained peculiar dark inclusions amidst numerous mitochondria. Both were attenuated at their periphery to form the thin epithelial layer. The layer between endothelium and epithelium was designated as basement membrane. It was seen to be generally thin and structureless, but was found thickened in some areas where it also contained collagen fibrils.

2003 ◽  
Vol 83 (2) ◽  
pp. 309-336 ◽  
Author(s):  
Alan R. Burns ◽  
C. Wayne Smith ◽  
David C. Walker

Neutrophil emigration in the lung differs substantially from that in systemic vascular beds where extravasation occurs primarily through postcapillary venules. Migration into the alveolus occurs directly from alveolar capillaries and appears to progress through a sequence of steps uniquely influenced by the cellular anatomy and organization of the alveolar wall. The cascade of adhesive and stimulatory events so critical to the extravasation of neutrophils from postcapillary venules in many tissues is not evident in this setting. Compelling evidence exists for unique cascades of biophysical, adhesive, stimulatory, and guidance factors that arrest neutrophils in the alveolar capillary bed and direct their movement through the endothelium, interstitial space, and alveolar epithelium. A prominent path accessible to the neutrophil appears to be determined by the structural interactions of endothelial cells, interstitial fibroblasts, as well as type I and type II alveolar epithelial cells.


1994 ◽  
Vol 266 (5) ◽  
pp. L544-L552 ◽  
Author(s):  
R. H. Hastings ◽  
J. R. Wright ◽  
K. H. Albertine ◽  
R. Ciriales ◽  
M. A. Matthay

Protein in the alveolar space may be cleared by endocytosis and degradation inside alveolar epithelial cells, by transcytosis across the alveolar epithelium, or by restricted diffusion through the epithelium. The relative contributions of these three pathways to clearance of large quantities of protein from the air spaces is not known. This study investigated the effects of monensin and nocodazole, agents which inhibit endocytosis in cell culture, on alveolar epithelial protein transport in anesthetized rabbits. There was evidence that monensin and nocodazole inhibited endocytosis by the alveolar epithelium in vivo. Nocodazole increased the number of vesicles in the alveolar epithelium and capillary endothelium. Monensin increased vesicle density in the endothelium. These results suggested that the inhibitors disrupted microtubules or interrupted cellular membrane traffic in the lung. Both inhibitors decreased lung parenchymal uptake of immunoreactive human albumin from the air spaces. Monensin and nocodazole inhibited albumin uptake in cultured alveolar type II cells. Monensin increased the amount of 125I-labeled surfactant protein A associated with the lungs, compared with the quantity remaining in the air space 2 h after instillation. Although the drugs decreased alveolar epithelial protein uptake, they did not decrease alveolar clearance of 125I-labeled immunoglobulin G or 131I-labeled albumin in anesthetized rabbits. Thus monensin- and nocodazole-sensitive protein-uptake pathways do not account for most alveolar protein clearance when the distal air spaces are filled with a protein solution.


2020 ◽  
Vol 21 (9) ◽  
pp. 3075 ◽  
Author(s):  
Matthias Ochs ◽  
Jan Hegermann ◽  
Elena Lopez-Rodriguez ◽  
Sara Timm ◽  
Geraldine Nouailles ◽  
...  

Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research.


1960 ◽  
Vol 7 (2) ◽  
pp. 357-366 ◽  
Author(s):  
H. E. Karrer

Diluted India ink was instilled into the nasal cavity of mice and the lungs of some animals were fixed with osmium tetroxide at various intervals after one instillation. The lungs of other animals were fixed after 4, 7, 9, 16, or 18 daily instillations. The India ink was found to be phagocytized almost exclusively by the free alveolar macrophages. A few particles are occasionally seen within thin portions of alveolar epithelium, within the "small" alveolar epithelial cells, or within occasional leukocytes in the lumina of alveoli. The particles are ingested by an invagination process of the plasma membrane resulting in the formation of intracellular vesicles and vacuoles. Ultimately large amounts of India ink accumulate in the cell, occupying substantial portions of the cytoplasm. The surfaces of phagocytizing macrophages show signs of intense motility. Their cytoplasm contains numerous particles, resembling Palade particles, and a large amount of rough surfaced endoplasmic reticulum. These structures are interpreted as indicative of protein synthesis. At the level of resolution achieved in this study the membranes of this reticulum appear as single dense "lines." On the other hand, the plasma membrane and the limiting membranes of vesicles and of vacuoles often exhibit the double-line structure typical of unit membranes (Robertson, 37). The inclusion bodies appear to be the product of phagocytosis. It is believed that some of them derive from the vacuoles mentioned above, and that they correspond to similar structures seen in phase contrast cinemicrographs of culture cells. Their matrix represents phagocytized material. Certain structures within this matrix are considered as secondary and some of these structures possess an ordered form probably indicative of the presence of lipid. The possible origin and the fate of alveolar macrophages are briefly discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Liang ◽  
Yanhua Chang ◽  
Jing Liu ◽  
Yan Yu ◽  
Wancheng Qiu ◽  
...  

Pulmonary fibrosis is a kind of interstitial lung disease with progressive pulmonary scar formation, leading to irreversible loss of lung functions. The TGF-β1/Smad signaling pathway plays a key role in fibrogenic processes. It is associated with the increased synthesis of extracellular matrix, enhanced proliferation of fibroblasts, and transformation of alveolar epithelial cells into interstitial cells. We investigated P-Rex1, a PIP3-Gβγ–dependent guanine nucleotide exchange factor (GEF) for Rac, for its potential role in TGF-β1–induced pulmonary fibrosis. A high expression level of P-Rex1 was identified in the lung tissue of patients with pulmonary fibrosis than that from healthy donors. Using the P-Rex1 knockdown and overexpression system, we established a novel player of P-Rex1 in mouse lung fibroblast migration. P-Rex1 contributed to fibrogenic processes in lung fibroblasts by targeting the TGF-β type Ⅱ receptor (TGFβR2). The RNA-seq analysis for expression profiling confirmed the modulation of P-Rex1 in cell migration and the involvement of P-Rex1 in TGF-β1 signaling. These results identified P-Rex1 as a signaling molecule involved in TGF-β1–induced pulmonary fibrosis, suggesting that P-Rex1 may be a potential target for pulmonary fibrosis treatment.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 83 ◽  
Author(s):  
Francesco Salton ◽  
Maria Volpe ◽  
Marco Confalonieri

Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial–mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.


1990 ◽  
Vol 68 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
R. K. Merchant ◽  
M. W. Peterson ◽  
G. W. Hunninghake

Alveolar epithelial cell injury and increased alveolar-capillary membrane permeability are important features of acute silicosis. To determine whether silica particles contribute directly to this increased permeability, we measured paracellular permeability of rat alveolar epithelium after exposure to silica, in vitro, using markers of the extracellular space. Silica (Minusil) markedly increased permeability in a dose- and time-dependent manner. This was not the result of cytolytic injury, because lactate dehydrogenase release from monolayers exposed to silica was not increased. Pretreatment of the silica with serum, charged dextrans, or aluminum sulfate blocked the increase in permeability. Scanning electron microscopy demonstrated adherence of the silica to the surface of the alveolar epithelial cells. Thus silica can directly increase permeability of alveolar epithelium.


1998 ◽  
Vol 275 (1) ◽  
pp. C82-C92 ◽  
Author(s):  
Spencer I. Danto ◽  
Zea Borok ◽  
Xiao-Ling Zhang ◽  
Melissa Z. Lopez ◽  
Paryus Patel ◽  
...  

We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) α-, β-, and γ-subunits and Na+ pump α1- and β1-subunits were detected in day 4 monolayers by Northern analysis and were unchanged in abundance in day 5 monolayers in the absence of EGF. Monolayers cultivated in the presence of EGF (20 ng/ml) for 24 h from day 4 to day 5 showed an increase in both α1 and β1Na+ pump subunit mRNA but no increase in rENaC subunit mRNA. EGF-treated monolayers showed parallel increases in Na+ pump α1- and β1-subunit protein by immunoblot relative to untreated monolayers. Fixed AEC monolayers demonstrated predominantly membrane-associated immunofluorescent labeling with anti-Na+ pump α1- and β1-subunit antibodies, with increased intensity of cell labeling for both subunits seen at 24 h following exposure to EGF. These changes in Na+ pump mRNA and protein preceded a delayed (>12 h) increase in short-current circuit (measure of active transepithelial Na+transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases active Na+ resorption across AEC monolayers primarily via direct effects on Na+ pump subunit mRNA expression and protein synthesis, leading to increased numbers of functional Na+ pumps in the basolateral membranes.


2005 ◽  
Vol 288 (2) ◽  
pp. L398-L408 ◽  
Author(s):  
Ricardo Murphy ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Thomas E. DeCoursey

Voltage-gated proton channels are expressed highly in rat alveolar epithelial cells. Here we investigated whether these channels contribute to pH regulation. The intracellular pH (pHi) was monitored using BCECF in cultured alveolar epithelial cell monolayers and found to be 7.13 in nominally HCO3−-free solutions [at external pH (pHo) 7.4]. Cells were acid-loaded by the NH4+ prepulse technique, and the recovery was observed. Under conditions designed to eliminate the contribution of other transporters that alter pH, addition of 10 μM ZnCl2, a proton channel inhibitor, slowed recovery about twofold. In addition, the pHi minimum was lower, and the time to nadir was increased. Slowing of recovery by ZnCl2 was observed at pHo 7.4 and pHo 8.0 and in normal and high-K+ Ringer solutions. The observed rate of Zn2+-sensitive pHi recovery required activation of a small fraction of the available proton conductance. We conclude that proton channels contribute to pHi recovery after an acid load in rat alveolar epithelial cells. Addition of ZnCl2 had no effect on pHi in unchallenged cells, consistent with the expectation that proton channels are not open in resting cells. After inhibition of all known pH regulators, slow pHi recovery persisted, suggesting the existence of a yet-undefined acid extrusion mechanism in these cells.


1992 ◽  
Vol 262 (1) ◽  
pp. L32-L39 ◽  
Author(s):  
K. A. Wikenheiser ◽  
S. E. Wert ◽  
J. R. Wispe ◽  
M. Stahlman ◽  
M. D'Amore-Bruno ◽  
...  

Hyperoxia causes severe lung injury in association with altered expression of surfactant proteins and lipids. To test whether oxygen induces surfactant protein B (SP-B) expression in specific respiratory epithelial cells, adult B6C3F1 and FVB/N mice were exposed to room air or 95% oxygen for 1–5 days. Northern blot analysis demonstrated an 8- to 10-fold increase in SP-B mRNA after 3 days that was maintained thereafter. In situ hybridization localized SP-B mRNA to bronchial, bronchiolar, and alveolar epithelial cells. Hyperoxia was associated with increased SP-B mRNA, noted primarily in the bronchiolar epithelium and decreased SP-B mRNA in the alveolar epithelium. After 5 days, central regions of lung parenchyma were nearly devoid of SP-B mRNA, while SP-B mRNA was maintained in alveolar cell populations close to vascular structures. To determine whether increased bronchiolar expression of SP-B mRNA during hyperoxia was a specific response, the abundance of CC10 mRNA (a Clara cell protein) was assessed. CC10 mRNA was detected in tracheal, bronchial, and bronchiolar, but not alveolar epithelium and was decreased upon exposure to hyperoxia. Immunocytochemistry demonstrated that SP-B proprotein was detected in bronchial, bronchiolar, and alveolar epithelial cells with staining increased in the bronchial and bronchiolar epithelium upon exposure to hyperoxia. SP-B gene expression in the respiratory epithelium is regulated at a pretranslational level and occurs in a cell specific manner during hyperoxic injury in the mouse.


Sign in / Sign up

Export Citation Format

Share Document