scholarly journals Modulation of T1α expression with alveolar epithelial cell phenotype in vitro

1998 ◽  
Vol 275 (1) ◽  
pp. L155-L164 ◽  
Author(s):  
Zea Borok ◽  
Spencer I. Danto ◽  
Richard L. Lubman ◽  
Yuxia Cao ◽  
Mary C. Williams ◽  
...  

T1α is a recently identified gene expressed in the adult rat lung by alveolar type I (AT1) epithelial cells but not by alveolar type II (AT2) epithelial cells. We evaluated the effects of modulating alveolar epithelial cell (AEC) phenotype in vitro on T1α expression using either soluble factors or changes in cell shape to influence phenotype. For studies on the effects of soluble factors on T1α expression, rat AT2 cells were grown on polycarbonate filters in serum-free medium (MDSF) or in MDSF supplemented with either bovine serum (BS, 10%), rat serum (RS, 5%), or keratinocyte growth factor (KGF, 10 ng/ml) from either day 0 or day 4 through day 8 in culture. For studies on the effects of cell shape on T1α expression, AT2 cells were plated on thick collagen gels in MDSF supplemented with BS. Gels were detached on either day 1(DG1) or day 4 (DG4) or were left attached until day 8. RNA and protein were harvested at intervals between days 1 and 8 in culture, and T1α expression was quantified by Northern and Western blotting, respectively. Expression of T1α progressively increases in AEC grown in MDSF ± BS between day 1 and day 8 in culture, consistent with transition toward an AT1 cell phenotype. Exposure to RS or KGF from day 0 prevents the increase in T1α expression on day 8, whereas addition of either factor from day 4 through day 8 reverses the increase. AEC cultured on attached gels express high levels of T1α on days 4 and 8. T1α expression is markedly inhibited in both DG1 and DG4 cultures, consistent with both inhibition and reversal of the transition toward the AT1 cell phenotype. These results demonstrate that both soluble factors and alterations in cell shape modulate T1α expression in parallel with AEC phenotype and provide further support for the concept that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible.

1999 ◽  
Vol 112 (2) ◽  
pp. 243-252
Author(s):  
E. Planus ◽  
S. Galiacy ◽  
M. Matthay ◽  
V. Laurent ◽  
J. Gavrilovic ◽  
...  

Type II pneumocytes are essential for repair of the injured alveolar epithelium. The effect of two MMP collagenases, MMP-1 and MMP-13 on alveolar epithelial repair was studied in vitro. The A549 alveolar epithelial cell line and primary rat alveolar epithelial cell cultures were used. Cell adhesion and cell migration were measured with and without exogenous MMP-1. Wound healing of a cell monolayer of rat alveolar epithelial cell after a mechanical injury was evaluated by time lapse video analysis. Cell adhesion on type I collagen, as well as cytoskeleton stiffness, was decreased in the presence of exogenous collagenases. A similar decrease was observed when cell adhesion was tested on collagen that was first incubated with MMP-1 (versus control on intact collagen). Cell migration on type I collagen was promoted by collagenases. Wound healing of an alveolar epithelial cell monolayer was enhanced in the presence of exogenous collagenases. Our results suggest that collagenases could modulate the repair process by decreasing cell adhesion and cell stiffness, and by increasing cell migration on type I collagen. Collagen degradation could modify cell adhesion sites and collagen degradation peptides could induce alveolar type II pneumocyte migration. New insights regarding alveolar epithelial cell migration are particularly relevant to investigate early events during alveolar epithelial repair following lung injury.


2003 ◽  
Vol 285 (6) ◽  
pp. L1192-L1200 ◽  
Author(s):  
Brigham C. Willis ◽  
Kwang-Jin Kim ◽  
Xian Li ◽  
Janice Liebler ◽  
Edward D. Crandall ◽  
...  

Transforming growth factor-β1 (TGF-β1) may be a critical mediator of lung injury and subsequent remodeling during recovery. We evaluated the effects of TGF-β1 on the permeability and active ion transport properties of alveolar epithelial cell monolayers. Rat alveolar type II cells plated on polycarbonate filters in defined serum-free medium form confluent monolayers and acquire the phenotypic characteristics of alveolar type I cells. Exposure to TGF-β1 (0.1-100 pM) from day 0 resulted in a concentration- and time-dependent decrease in transepithelial resistance ( Rt) and increase in short-circuit current ( Isc). Apical amiloride or basolateral ouabain on day 6 inhibited Isc by 80 and 100%, respectively. Concurrent increases in expression of Na+-K+-ATPase α1- and β1-subunits were observed in TGF-β1-treated monolayers. No change in the α-subunit of the rat epithelial sodium channel (α-rENaC) was seen. Exposure of confluent monolayers to TGF-β1 from day 4 resulted in an initial decrease in Rt within 6 h, followed by an increase in Isc over 72-96 h. These results demonstrate that TGF-β1 modulates ion conductance and active transport characteristics of the alveolar epithelium, associated with increased Na+-K+-ATPase, but without a change in α-rENaC.


2005 ◽  
Vol 288 (2) ◽  
pp. L342-L349 ◽  
Author(s):  
Hiroshi Kida ◽  
Mitsuhiro Yoshida ◽  
Shigenori Hoshino ◽  
Koji Inoue ◽  
Yukihiro Yano ◽  
...  

The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT were more resistant to ROS-induced DNA fragmentation than those of IL-6-deficient (IL-6−/−) mice. WT resistance against ROS was abrogated by treatment with anti-IL-6 antibody. TdT-mediated dUTP nick end labeling stain and electron microscopy revealed that DNA fragmented cells in the IL-6−/− slice included alveolar epithelial cells and endothelial cells. In vitro studies demonstrated that IL-6 reduced ROS-induced A549 alveolar epithelial cell death. Together, these data suggest that IL-6 played an antioxidant role in the lung by protecting lung resident cells, especially alveolar epithelial cells, from ROS-induced cell death.


1991 ◽  
Vol 260 (4) ◽  
pp. L318-L325 ◽  
Author(s):  
R. H. Simon ◽  
J. A. Edwards ◽  
M. M. Reza ◽  
R. G. Kunkel

In a variety of inflammatory lung diseases, type I alveolar epithelial cells are more likely to be injured than are type II cells. Because oxidants have been implicated as a cause of injury in various inflammatory lung diseases, we evaluated the effects of differentiation on alveolar epithelial cell susceptibility to H2O2-induced injury. With the use of isolated rat type II cells in culture, we found that the cytotoxic effect of H2O2 increased between days 2 and 7, when type II cells are known to lose their distinctive type II properties and assume a more type I-like appearance. We previously reported that type II cells utilized both intracellular catalase and glutathione-dependent reactions to protect against H2O2. We therefore examined whether alterations in either of these protective mechanisms were responsible for the differentiation-dependent changes in sensitivity to H2O2. We found that catalase activity within alveolar epithelial cells decreased between 2 and 7 days in culture, whereas no changes were detected in glutathione-dependent systems. We then used a histochemical technique that detects catalase activity and found that type II cells within rat lungs possessed numerous catalase-containing peroxisomes, whereas very few were detected in type I cells. These findings demonstrate that as type II cells assume a type I-like phenotype, they become more susceptible to H2O2-induced injury. This increased susceptibility is associated with reductions in intracellular catalase activity, both in vitro and in vivo.


1994 ◽  
Vol 266 (1) ◽  
pp. L92-L100 ◽  
Author(s):  
S. Lannan ◽  
K. Donaldson ◽  
D. Brown ◽  
W. MacNee

The oxidant-antioxidant balance in the airspaces of the lungs may be critical in protecting the lungs from the effects of cigarette smoke. We studied the effect of cigarette smoke and its condensates on the detachment, attachment, and proliferation of the A549 human alveolar epithelial cell line, in an in vitro model of cell injury and regeneration and the protective effects of antioxidants. Whole and vapor phase cigarette smoke decreased 51Cr-labeled A549 cell attachment, increased cell detachment, and decreased cell proliferation, as assessed by [3H]thymidine uptake. Freshly isolated rat type II alveolar epithelial cells showed an enhanced susceptibility to smoke-induced cell lysis when compared with the A549 cell line. Reduced glutathione (GSH) (400 microM) protected against the effects of cigarette smoke exposure on cell attachment, proliferation, and detachment. Depletion of intracellular GSH with buthionine sulfoxamine enhanced the epithelial cell detachment injury produced by smoke condensates. We conclude that cigarette smoke and its condensates cause an oxidant-induced injury to A549 human type II alveolar epithelial cells. Both intra- and extracellular GSH have important roles in protecting epithelial cells from the injurious effects of cigarette smoke.


1996 ◽  
Vol 271 (5) ◽  
pp. L707-L718 ◽  
Author(s):  
W. W. Barton ◽  
S. E. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 ICAM-1) is a transmembrane adhesion protein that is expressed constitutively on the apical surface of type I cells in vivo and on type II cells in vitro as they spread in culture, assuming type I cell-like characteristics. To investigate the possible interaction of ICAM-1 with the alveolar epithelial cell cytoskeleton, rat type II cells in primary culture were extracted with nonionic detergent, and residual ICAM-1 associated with the cytoskeletal remnants was determined using immunofluorescence microscopy, immunoprecipitation, and cell-based enzyme-linked immunosorbent assay. A large fraction of alveolar epithelial cell ICAM-1 remained associated with the cytoskeleton after detergent extraction, whereas two other transmembrane molecules, transferrin receptor and class II major histocompatibility complex, were completely removed. ICAM-1 was redistributed on the cell surface after the disruption of actin filaments with cytochalasin B, suggesting interaction with the actin cytoskeleton. In contrast, ICAM-1 was completely detergent soluble in rat pulmonary artery endothelial cells, human umbilical vein endothelial cells, and rat alveolar macrophages. The association of ICAM-1 with the alveolar epithelial cell cytoskeleton was not altered after stimulation with inflammatory cytokines. However, detergent resistant ICAM-1 was significantly increased after crosslinking of ICAM-1 on the cell surface, suggesting that this cytoskeletal association may be modulated by interactions of alveolar epithelial cells with inflammatory cells. The association of ICAM-1 with the cytoskeleton in alveolar epithelial cells may provide a fixed intermediary between mobile inflammatory cells and the alveolar surface.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jonathan M. Carnino ◽  
Heedoo Lee ◽  
Xue He ◽  
Michael Groot ◽  
Yang Jin

Abstract Acute respiratory distress syndrome (ARDS) is a devastating syndrome responsible for significant morbidity and mortality. Diffuse alveolar epithelial cell death, including but not limited to apoptosis and necroptosis, is one of the hallmarks of ARDS. Currently, no detectable markers can reflect this feature of ARDS. Hyperoxia-induced lung injury is a well-established murine model that mimics human ARDS. We found that hyperoxia and its derivative, reactive oxygen species (ROS), upregulate miR-185-5p, but not miR-185-3p, in alveolar cells. This observation is particularly more significant in alveolar type II (ATII) than alveolar type I (ATI) cells. Functionally, miR-185-5p promotes expression and activation of both receptor-interacting kinase I (RIPK1) and receptor-interacting kinase III (RIPK3), leading to phosphorylation of mixed lineage kinase domain-like (MLKL) and necroptosis. MiR-185-5p regulates this process probably via suppressing FADD and caspase-8 which are both necroptosis inhibitors. Furthermore, miR-185-5p also promotes intrinsic apoptosis, reflected by enhancing caspase-3/7 and 9 activity. Importantly, extracellular vesicle (EV)-containing miR-185-5p, but not free miR-185-5p, is detectable and significantly elevated after hyperoxia-induced cell death, both in vitro and in vivo. Collectively, hyperoxia-induced miR-185-5p regulates both necroptosis and apoptosis in ATII cells. The extracellular level of EV-cargo miR-185-5p is elevated in the setting of profound epithelial cell death.


1994 ◽  
Vol 266 (4) ◽  
pp. L476-L484 ◽  
Author(s):  
R. Paine ◽  
P. Christensen ◽  
G. B. Toews ◽  
R. H. Simon

In normal lung, intercellular adhesion molecule 1 (ICAM-1) is expressed at high levels on thin type I alveolar epithelial cells, but is minimally expressed on cuboidal type II cells. ICAM-1 is induced in primary culture on tissue culture-treated plastic as type II cells undergo transition toward a type I cell-like phenotype. We hypothesized that alveolar epithelial cell expression of ICAM-1 might be regulated in part by signals that influence the state of differentiation of these cells. We found that rat type II cells that were cultured as aggregates of cuboidal cells on a hydrated basement membrane gel (Matrigel) or on floating type I collagen gels, expressed markedly less ICAM-1 protein and mRNA compared with cells that had spread on plastic. In contrast, type II cells that had spread as monolayers on dishes coated with basement membrane proteins in planar configuration demonstrated ICAM-1 expression comparable to that of cells on plastic alone. Thus regulation of alveolar epithelial cell expression of this immunologically important adhesion molecule involves complex spatial interactions of the cells with the basement membrane and other epithelial cells.


1997 ◽  
Vol 273 (1) ◽  
pp. L246-L255 ◽  
Author(s):  
K. M. Ridge ◽  
D. H. Rutschman ◽  
P. Factor ◽  
A. I. Katz ◽  
A. M. Bertorello ◽  
...  

Lung Na-K-ATPase has been shown to contribute to vectorial Na+ transport and edema clearance. The alpha 1- and beta 1-Na-K-ATPase subunits have been localized to alveolar type II (ATII) cells, and the alpha 2-Na-K-ATPase has been reported in rat lung homogenates. Expression of Na-K-ATPase alpha 1-, alpha 2-, and beta 1-subunits was investigated in rat ATII cells cultured for 7 days, a period during which they lose their phenotypic markers and differentiate to an alveolar type I (ATI)-like cell phenotype. Differentiation of ATII cells to an ATI-like phenotype resulted in a decrease of alpha 1- and an increase of alpha 2-mRNA and protein abundance without changes in the beta 1-subunit. Thus ATI-like cells exhibited a mixture of alpha 1- and alpha 2-isoforms. Nuclear run-on analysis suggests that these changes were transcriptionally regulated. The existence of the distinct functional classes of Na-K-ATPase in ATII and ATI-like cells was confirmed by ouabain inhibition of Na-K-ATPase activity. Ouabain inhibition of ATII cells was consistent with expression of the alpha 1-isozyme [50% inhibitory concentration (IC50) = 4 x 10(-5) M], whereas, in ATI-like cells, it was consistent with the presence of both alpha 1- and alpha 2-isozymes (IC50 = 9.0 x 10(-5) and 1.5 x 10(-7) M, respectively); [3H]ouabain binding studies corroborated these findings. Our results indicate that, during ATII cell cytodifferentiation with time in culture, there is a shift in isoform composition that may reflect physiological functions of alveolar epithelial cells.


2006 ◽  
Vol 75 (2) ◽  
pp. 1034-1039 ◽  
Author(s):  
Joshua D. Hall ◽  
Robin R. Craven ◽  
James R. Fuller ◽  
Raymond J. Pickles ◽  
Thomas H. Kawula

ABSTRACT Francisella tularensis replicates in macrophages and dendritic cells, but interactions with other cell types have not been well described. F. tularensis LVS invaded and replicated within alveolar epithelial cell lines. Following intranasal inoculation of C57BL/6 mice, Francisella localized to the alveolus and replicated within alveolar type II epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document