Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60src

1999 ◽  
Vol 276 (6) ◽  
pp. L989-L998 ◽  
Author(s):  
Joe G. N. Garcia ◽  
Alexander D. Verin ◽  
Kane Schaphorst ◽  
Rafat Siddiqui ◽  
Carolyn E. Patterson ◽  
...  

Inflammatory diseases of the lung are characterized by increases in vascular permeability and enhanced leukocyte infiltration, reflecting compromise of the endothelial cell (EC) barrier. We examined potential molecular mechanisms that underlie these alterations and assessed the effects of diperoxovanadate (DPV), a potent tyrosine kinase activator and phosphatase inhibitor, on EC contractile events. Confocal immunofluorescent microscopy confirmed dramatic increases in stress-fiber formation and colocalization of EC myosin light chain (MLC) kinase (MLCK) with the actin cytoskeleton, findings consistent with activation of the endothelial contractile apparatus. DPV produced significant time-dependent increases in MLC phosphorylation that were significantly attenuated but not abolished by EC MLCK inhibition with KT-5926. Pretreatment with the Rho GTPase-inhibitory C3exotoxin completely abolished DPV-induced MLC phosphorylation, consistent with Rho-mediated MLC phosphatase inhibition and novel regulation of EC MLCK activity. Immunoprecipitation of EC MLCK after DPV challenge revealed dramatic time-dependent tyrosine phosphorylation of the kinase in association with increased MLCK activity and a stable association of MLCK with the p85 actin-binding protein cortactin and p60src. Translocation of immunoreactive cortactin from the cytosol to the cytoskeleton was noted after DPV in concert with cortactin tyrosine phosphorylation. These studies indicate that DPV activates the endothelial contractile apparatus in a Rho GTPase-dependent fashion and suggests that p60src-induced tyrosine phosphorylation of MLCK and cortactin may be important features of contractile complex assembly.

2004 ◽  
Vol 286 (4) ◽  
pp. L841-L847 ◽  
Author(s):  
John H. Tinsley ◽  
Nicole R. Teasdale ◽  
Sarah Y. Yuan

Major cutaneous burns result in not only localized tissue damage but broad systemic inflammation causing organ system damage distal to the burn site. It is well recognized that many problems result from the release of inflammatory mediators that target vascular endothelial cells, causing organ dysfunction. The pulmonary microvessels are particularly susceptible to functional abnormalities as a direct consequence of exposure to burn-induced inflammatory mediators. Traditional therapeutic intervention is quite often ineffective in treating burn patients suffering from systemic problems. A possible explanation for this ineffectiveness may be that because so many mediators are released, supposedly activating numerous signaling cascades that interact with each other, targeting of upstream factors in these cascades on an individual basis becomes futile. Therefore, if an end-point effector responsible for endothelial dysfunction following burn injury could be identified, it may present a target for intervention. In this study, we identified phosphorylation of myosin light chain (MLC) as a required element of burn plasma-induced hyperpermeability across rat lung microvascular endothelial cell monolayers. In addition, pharmacological inhibition of myosin light chain kinase (MLCK) and Rho kinase as well as transfection of MLCK-inhibiting peptide blocked actin stress fiber formation and MLC phosphorylation in response to burn plasma. The results suggest that blocking MLC phosphorylation may provide therapeutic intervention in burn patients with the goal of alleviating systemic inflammation-induced endothelial dysfunction.


2017 ◽  
Vol 7 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Ting Wang ◽  
Yuka Shimizu ◽  
Xiaomin Wu ◽  
Gabriel T. Kelly ◽  
Xiaoyan Xu ◽  
...  

Increased exposure to ambient particulate matter (PM) is associated with elevated morbidity and mortality in patients with cardiopulmonary diseases and cancer. We and others have shown that PM induces lung microvascular barrier dysfunction which potentially enhances the systemic toxicity of PM. However, the mechanisms by which PM disrupts vascular endothelial integrity remain incompletely explored. We hypothesize that PM induces endothelial cell (EC) cytoskeleton rearrangement via Rho GTPase-dependent pathways to facilitate vascular hyperpermeability. Fine PM induced time-dependent activation of cytoskeletal machinery with increases in myosin light chain (MLC) phosphorylation and EC barrier disruption measured by transendothelial electrical resistance (TER), events attenuated by the Rho-dependent kinase (ROCK) inhibitor Y-27632 or the reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC). Both Y-27632 and NAC prevented PM-induced stress fiber formation and phospho-MLC accumulation in human lung ECs. PM promotes rapid accumulation of Rho-GTP. This event is attenuated by NAC or knockdown of RhoA (siRNA). Consistent with ROCK activation, PM induced phosphorylation of myosin light chain phosphatase (MYPT) at Thr850, a post-translational modification known to inhibit phosphatase activity. Furthermore, PM activates the guanine nucleotide exchange factor (GEF) for Rho, p115, with p115 translocation to the cell periphery, in a ROS-dependent manner. Together these results demonstrate that fine PM induces EC cytoskeleton rearrangement via Rho-dependent pathways that are dependent upon the generation of oxidative stress. As the disruption of vascular integrity further contributes to cardiopulmonary physiologic derangements, these findings provide pharmacologic targets for prevention of PM-induced cardiopulmonary toxicity.


2018 ◽  
Vol 8 (2) ◽  
pp. 204589401876417 ◽  
Author(s):  
Ting Wang ◽  
Mary E. Brown ◽  
Gabriel T. Kelly ◽  
Sara M. Camp ◽  
Joseph B. Mascarenhas ◽  
...  

Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y464 and Y471 phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y464 phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y464 phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.


2004 ◽  
Vol 287 (5) ◽  
pp. L911-L918 ◽  
Author(s):  
Talaibek Borbiev ◽  
Anna Birukova ◽  
Feng Liu ◽  
Saule Nurmukhambetova ◽  
William T. Gerthoffer ◽  
...  

We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon. Both SB-203580 and dominant negative p38 adenoviral vector significantly attenuated thrombin-induced declines in transendothelial electrical resistance. Consistent with these data SB-203580 decreased actin stress fiber formation produced by thrombin in endothelium. In addition, dominant negative p38 had no effect on thrombin-induced myosin light chain diphosphorylation. Thrombin-induced total and site-specific caldesmon phosphorylation (Ser789) as well as dissociation of caldesmon-myosin complex were attenuated by SB-203580 pretreatment. These results suggest the involvement of p38 MAP kinase activities and caldesmon phosphorylation in the MLCK-independent regulation of thrombin-induced endothelial cell permeability.


1993 ◽  
Vol 265 (6) ◽  
pp. L606-L612 ◽  
Author(s):  
R. Sheldon ◽  
A. Moy ◽  
K. Lindsley ◽  
S. Shasby ◽  
D. M. Shasby

Endothelial cells retract centripetally when they are exposed to histamine and when extracellular calcium is chelated. This centripetal retraction implies that a centripetal tension must be expressed in the cells. We asked whether phosphorylation of the light chain of myosin (MLC) was important for the retraction to occur, and, by inference, expression of the tension. In human umbilical vein endothelial (HUVE) cells and in porcine pulmonary artery endothelial (PPAE) cells tryptic peptide maps indicated that MLC was phosphorylated by myosin light-chain kinase (MLCK). Activity of MLCK is inhibited by ML-9, a kinase inhibitor with relative specificity for MLCK, and when MLCK is phosphorylated by the adenosine 3',5'-cyclic monophosphate (cAMP)-dependent kinase. Pretreatment of HUVE cells or PPAE cells with ML-9 or forskolin-aminophylline (to increase cell cAMP) reduced basal MLC phosphorylation and prevented an expected increase in MLC phosphorylation following exposure of HUVE cells to histamine. Pretreatment of HUVE cells with ML-9 or forskolin-aminophylline prevented HUVE cell retraction (measured as an increase in permeability of a monolayer of HUVE cells) in response to histamine. Pretreatment of PPAE cells with ML-9 or forskolin-aminophylline prevented PPAE cell retraction in response to chelation of extracellular calcium. These data support the hypothesis that phosphorylation of MLC is an important component of endothelial cell retraction.


1995 ◽  
Vol 269 (1) ◽  
pp. L99-L108 ◽  
Author(s):  
A. D. Verin ◽  
C. E. Patterson ◽  
M. A. Day ◽  
J. G. Garcia

Thrombin-induced cultured bovine endothelial cell (EC) gap formation and albumin permeability is initiated by contraction, which is dependent upon myosin light chain kinase-mediated myosin light chain (MLC) phosphorylation. MLC are then rapidly dephosphorylated (J. G. N. Garcia, H. W. Davis, and C. E. Patterson, J. Cell. Physiol. 163: 510–522, 1995), suggesting a role for MLC dephosphorylation in regulation of EC barrier function. Therefore, we studied the effect of semiselective protein phosphatase (PPase) inhibitors, calyculin A and okadaic acid, on MLC phosphorylation status, myosin-associated PPase activity, and EC monolayer permeability. Calyculin A (0.1–10 nM), but not okadaic acid (1–100 nM) produced significant dose-dependent enhancement of both MLC phosphorylation (three- to four-fold) and EC permeability (eightfold). EC homogenates were utilized to assess Ser/Thr PPase activities using either [32P]phosphorylase A or 32P-labeled skeletal MLC as substrates. Calyculin A at 5 nM (sufficient to inhibit type 1 and type 2A PPase) produced approximately 95% inhibition of all EC PPase activity against both substrates, whereas 2 nM okadaic acid (selective for PPase 2A) only partially inhibited EC PPase activity (40–60%). Fractionation of EC homogenates produced a supernatant fraction containing < 10% of total myosin and a pellet fraction with > 90% of total myosin. PPase activity in the myosin-enriched pellet was insensitive to 2 nM okadaic acid (0% inhibition) but sensitive to 5 nM calyculin (> 95% inhibition). Immunoreactive PPase 1 was present in both fractions, whereas PPase 2A was present only in the myosin-depleted fraction. We conclude that a type 1 myosin-associated PPase is involved in regulation of EC contractility and barrier function.


2010 ◽  
Vol 21 (22) ◽  
pp. 4042-4056 ◽  
Author(s):  
Steven M. Dudek ◽  
Eddie T. Chiang ◽  
Sara M. Camp ◽  
Yurong Guo ◽  
Jing Zhao ◽  
...  

Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shengjie Xu ◽  
Anthony Schwab ◽  
Nikhil Karmacharya ◽  
Gaoyuan Cao ◽  
Joanna Woo ◽  
...  

Abstract Background Activation of free fatty acid receptors (FFAR1 and FFAR4) which are G protein-coupled receptors (GPCRs) with established (patho)physiological roles in a variety of obesity-related disorders, induce human airway smooth muscle (HASM) cell proliferation and shortening. We reported amplified agonist-induced cell shortening in HASM cells obtained from obese lung donors. We hypothesized that FFAR1 modulate excitation–contraction (EC) coupling in HASM cells and play a role in obesity-associated airway hyperresponsiveness. Methods In HASM cells pre-treated (30 min) with FFAR1 agonists TAK875 and GW9508, we measured histamine-induced Ca2+ mobilization, myosin light chain (MLC) phosphorylation, and cortical tension development with magnetic twisting cytometry (MTC). Phosphorylation of MLC phosphatase and Akt also were determined in the presence of the FFAR1 agonists or vehicle. In addition, the effects of TAK875 on MLC phosphorylation were measured in HASM cells desensitized to β2AR agonists by overnight salmeterol treatment. The inhibitory effect of TAK875 on MLC phosphorylation was compared between HASM cells from age and sex-matched non-obese and obese human lung donors. The mean measurements were compared using One-Way ANOVA with Dunnett’s test for multiple group comparisons or Student’s t-test two-group comparison. For cortical tension measurements by magnetic twisted cytometry, mixed effect model using SAS V.9.2 was applied. Means were considered significant when p ≤ 0.05. Results Unexpectedly, we found that TAK875, a synthetic FFAR1 agonist, attenuated histamine-induced MLC phosphorylation and cortical tension development in HASM cells. These physiological outcomes were unassociated with changes in histamine-evoked Ca2+ flux, protein kinase B (AKT) activation, or MLC phosphatase inhibition. Of note, TAK875-mediated inhibition of MLC phosphorylation was maintained in β2AR-desensitized HASM cells and across obese and non-obese donor-derived HASM cells. Conclusions Taken together, our findings identified the FFAR1 agonist TAK875 as a novel bronchoprotective agent that warrants further investigation to treat difficult-to-control asthma and/or airway hyperreactivity in obesity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Srisathya Srinivasan ◽  
Sreya Das ◽  
Vishakha Surve ◽  
Ankita Srivastava ◽  
Sushant Kumar ◽  
...  

AbstractActomyosin contractility, crucial for several physiological processes including migration, is controlled by the phosphorylation of myosin light chain (MLC). Rho-associated protein kinase (ROCK) and Myosin light chain kinase (MLCK) are predominant kinases that phosphorylate MLC. However, the distinct roles of these kinases in regulating actomyosin contractility and their subsequent impact on the migration of healthy and malignant skin cells is poorly understood. We observed that blockade of ROCK in healthy primary keratinocytes (HPKs) and epidermal carcinoma cell line (A-431 cells) resulted in loss of migration, contractility, focal adhesions, stress fibres, and changes in morphology due to reduction in phosphorylated MLC levels. In contrast, blockade of MLCK reduced migration, contractile dynamics, focal adhesions and phosphorylated MLC levels of HPKs alone and had no effect on A-431 cells due to the negligible MLCK expression. Using genetically modified A-431 cells expressing phosphomimetic mutant of p-MLC, we show that ROCK dependent phosphorylated MLC controls the migration, focal adhesion, stress fibre organization and the morphology of the cells. In conclusion, our data indicate that ROCK is the major kinase of MLC phosphorylation in both HPKs and A-431 cells, and regulates the contractility and migration of healthy as well as malignant skin epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document