Effects of leptin administration on lactational infertility in food-restricted rats depend on milk delivery

2004 ◽  
Vol 286 (1) ◽  
pp. R217-R225 ◽  
Author(s):  
Alfonso Abizaid ◽  
Diana Kyriazis ◽  
Barbara Woodside

Leptin administration has been shown to prevent the disruptive effects of acute food deprivation on reproductive function in cycling females and lactating females. We examined the ability of intracerebroventricular leptin administration to ameliorate the effects of food restriction for the first 2 wk postpartum on length of lactational infertility. Leptin administration did not reduce the effects of food restriction on reproductive function at either time period ( days 8-15 and 15-22 postpartum) or dose (1 and 10 μg/day) administered. Because of the sharp contrast between these results and the ability of leptin to offset the effects of acute food deprivation in lactating rats, the remaining studies investigated the possible causes of this difference. Both central and peripheral leptin administration eliminated food deprivation-induced prolongation of lactational infertility, suggesting that neither route of administration nor dose was a factor. However, we noticed that, whereas chronically food-restricted females continue to deliver milk to their young, acutely food-deprived females do not. To test the hypothesis that the continued energetic drain of milk production and delivery might prevent the ability of exogenous leptin administration to eliminate the effects of undernutrition, leptin was administered to food-restricted, lactating rats prevented from delivering milk. In this situation intracerebroventricular leptin treatment completely eliminated the effects of food restriction on lactational infertility, suggesting that leptin contributes to the maintenance of reproductive function via two pathways: direct binding in the central nervous system and through increasing the availability of oxidizable metabolic fuels.

2018 ◽  
Vol 6 ◽  
pp. 205031211880124
Author(s):  
Somasundram Pillay ◽  
Kaveer Ramchandre

Background: With the increased prevalence of HIV pandemic, more focus is placed on pathology involving the central nervous system secondary to HIV infection. Medical computerised tomography scans have become an integral investigation at a regional hospital level. Objective: To provide a description of central nervous system space occupying infective lesion found within this cohort of patients. Setting: Edendale Hospital, Pietermaritzburg, KwaZulu-Natal. Methods: This was a retrospective study in which the charts of all HIV-infected medical patients with findings of a space occupying infective lesion on computerised tomography brain seen for the time period 1 January 2015 up to and including 31 December 2015 were analysed. A total of 110 patient files were evaluated. Results: Most patients were in the third to fourth decade of life with mean cluster of differentiation 4 of 125 cells/mm3. A differential comprising toxoplasmosis or tuberculoma (80.9%) was the leading aetiology described. Most frequent clinical features in these patients included seizures (41.8%), confusion or altered mental state (38.2%), headaches (33.6%), hemiparesis (48.2%) and cranial nerve abnormality (22.7%). The most common central nervous system sites involved were, in order of decreasing prevalence was parietal, basal ganglia, frontal cortex (31.8% vs 31.8% vs 26.4%, respectively). Early initiation of co-trimoxazole and anti-tuberculosis treatment yielded better outcomes compared to the group who received delayed or no treatment with p-values (Pearson’s χ2) of 0.0002 and <0.0001, respectively. Conclusion: Computerised tomography scans to detect space-occupying infective lesion of the brain are invaluable for rapid diagnosis and to reduce morbidity and mortality.


2016 ◽  
Author(s):  
Sydney R. Coffey ◽  
Robert M. Bragg ◽  
Minnig Shawn ◽  
Seth A. Ament ◽  
Glickenhaus Anne ◽  
...  

AbstractHuntington’s disease (HD) is an autosomal dominant neurodegenerative disease whose neuropathological signature is a selective loss of medium spiny neurons in the striatum. Despite this selective neuropathology, the mutant protein (huntingtin) is found in virtually every cell so far studied, and, consequently, phenotypes are observed in a wide range of organ systems both inside and outside the central nervous system. We, and others, have suggested that peripheral dysfunction could contribute to the rate of progression of striatal phenotypes of HD. To test this hypothesis, we lowered levels of huntingtin by treating mice with antisense oligonucleotides (ASOs) targeting the murine Huntingtin gene. To study the relationship between peripheral huntingtin levels and striatal HD phenotypes, we utilized a knock-in model of the human HD mutation (the B6.HttQ111/+ mouse). We treated mice with ASOs from 2-10 months of age, a time period over which significant HD-relevant signs progressively develop in the brains of HttQ111+ mice. Peripheral treatment with ASOs led to persistent reduction of huntingtin protein in peripheral organs, including liver, brown and white adipose tissues. This reduction was not associated with alterations in the severity of HD-relevant signs in the striatum of HttQ111/+ mice at the end of the study, including transcriptional dysregulation, the accumulation of neuronal intranuclear inclusions, and behavioral changes such as subtle hypoactivity and reduced exploratory drive. These results suggest that the amount of peripheral reduction achieved in the current study does not significantly impact the progression of HD-relevant signs in the central nervous system.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document