scholarly journals Regulation of fetal liver growth in a model of diet restriction in the pregnant rat

2016 ◽  
Vol 311 (3) ◽  
pp. R478-R488 ◽  
Author(s):  
Joan M. Boylan ◽  
Jennifer A. Sanders ◽  
Philip A. Gruppuso

Limited nutrient availability is a cause of intrauterine growth restriction (IUGR), a condition that has important implications for the well being of the offspring. Using the established IUGR model of maternal fasting in the rat, we investigated mechanisms that control gene expression and mRNA translation in late-gestation fetal liver. Maternal fasting for 48 h during the last one-third of gestation was associated with a 10–15% reduction in fetal body weight and a disproportionate one-third reduction in total fetal liver protein. The fetal liver transcriptome showed only subtle changes consistent with reduced cell proliferation and enhanced differentiation in IUGR. Effects on the transcriptome could not be attributed to specific transcription factors. We purified translating polysomes to profile the population of mRNAs undergoing active translation. Microarray analysis of the fetal liver translatome indicated a global reduction of translation. The only targeted effect was enhanced translation of mitochondrial ribosomal proteins in IUGR, consistent with enhanced mitochondrial biogenesis. There was no evidence for attenuated signaling through the mammalian target of rapamycin (mTOR). Western blot analysis showed no changes in fetal liver mTOR signaling. However, eukaryotic initiation factor 2α (eIF2α) phosphorylation was increased in livers from IUGR fetuses, consistent with a role in global translation control. Our data indicate that IUGR-associated changes in hepatic gene expression and mRNA translation likely involve a network of complex regulatory mechanisms, some of which are novel and distinct from those that mediate the response of the liver to nutrient restriction in the adult rat.

2008 ◽  
Vol 295 (2) ◽  
pp. R558-R567 ◽  
Author(s):  
Philip A. Gruppuso ◽  
Shu-Whei Tsai ◽  
Joan M. Boylan ◽  
Jennifer A. Sanders

We have investigated the regulation of translation during the period of rapid liver growth that occurs at the end of gestation in the rat. This work was based on our prior observation that fetal hepatocyte proliferation is resistant to the inhibitory effects of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a nutrient-sensing kinase that controls ribosome biogenesis and protein translation. We hypothesized that translation control in late-gestation fetal liver differs from that in adult liver. We first examined the ability of rapamycin to inhibit the translation of mRNAs encoding ribosomal proteins. Consistent with the effect of rapamycin on proliferation, the activation of adult liver 5′-terminal oligopyrimidine tracts (5′-TOP) translation that occurred during refeeding after food deprivation was sensitive to rapamycin. Fetal liver 5′-TOP translation was insensitive. We went on to examine the eukaryotic initiation factor (eIF) 4F cap-binding complex that controls global protein synthesis. The molecular weights of the multiple eIF4G1 isoforms present in fetal and adult liver eIF4F complexes differed. In addition, fetal liver expressed the eIF4A1 form of the eIF4A helicase, whereas adult liver contained eIF4A1 and eIF4A2. Rapamycin administration before refeeding in adult rats inhibited formation of the preinitiation complex to a much greater degree than rapamycin administration to fetal rats in situ. We conclude that there are major structural and functional differences in translation control between late-gestation fetal and adult liver. These differences may confer differential sensitivity to the growth inhibitory effects of rapamycin.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2432-2432
Author(s):  
Nirmalee Abayasekara ◽  
Michelle Levine ◽  
Niccolo Bolli ◽  
Hong Sun ◽  
Matthew Silver ◽  
...  

Abstract Abstract 2432 NPM1, is a highly conserved, ubiquitous nucleolar phosphoprotein that belongs to the nucleoplasmin family of nuclear chaperones. NPM1−/− mice die at mid-gestation (E11.5) from anemia, underscoring the gene's role in embryonic development. NPM1 is one of the most frequently mutated genes in AML. Mutations in NPM1 are found in 50% of normal karyotype AML patients, and mutant NPM1 (NPMc+) is aberrantly located in the cytoplasm of leukemic blasts in about 35% of all AML patients. Furthermore, NPM1 maps to a region on chromosome 5q that is the target of deletions in both de novo and therapy-associated human MDS. NPM1 thus acts as a haploinsufficient tumor suppressor in the hematological compartment, although the mechanism of its contribution to dysmyelopoiesis remains unknown. NPM-1+/− mice develop a hematological syndrome similar to that observed in human MDS, and develop AML over time. The NPM1 deficient model therefore provides a platform to interrogate the molecular basis of MDS. We identified nucleophosmin (NPM1) in a screen for protein binding partners of C/EBPα. C/EBPα is a single exon gene, but is expressed as two isoforms that arise by alternate translation start sites to yield a full length C/EBPα p42 and a truncated dominant negative C/EBPα p30 isoform. Translational control of isoform expression is orchestrated by a conserved upstream open reading frame (uORF) in the 5' untranslated region (5'UTR) and modulated by the translation initiation factors eIF4E and eIF2. We generated factor-dependent myeloid cell lines from the bone marrow of Npm1+/+ and Npm1+/− mice. These lines are IL-3-dependent and inducible toward neutrophil maturation with GM-CSF and/ or all- trans retinoic acid (ATRA). Neutrophils derived from MNPM1+/− cells display defective neutrophil-specific gene expression, including a cassette of C/EBPα-dependent genes. These observations led us to postulate that myeloid abnormalities in NPM1 deficiency reflect an aberrant NPM1-C/EBPα axis. We show that NPM1 haploinsufficiency upregulates eIF4E (eukaryotic initiation factor 4E) (but not eIF2), which binds the mRNA-Cap (m7-GTP) as part of the mRNA translation initiation complex, eIF4F. Increased eIF4E is observed in about 30% of all malignancies. Initial increased eIF4E levels in MNPM+/− cells likely reflect transcriptional activation by the oncoprotein c-Myc, protein levels of which are also elevated in MNPM1+/− cells. We propose that increased eIF4E then induces increased C/EBPαp30 translation. C/EBPαp30 is a dominant negative inhibitor of full length C/EBPαp42 activity and disrupts normal neutrophil development. Furthermore, we demonstrate that C/EBPαp30 but not C/EBPαp42, activates the eIF4E promoter. We propose a positive feedback loop, wherein increased C/EBPαp30 induced by eIF4E further increases the expression of eIF4E. Our data suggest that NPM1 deficiency modulates neutrophil-specific gene expression by altering C/EBPα. We propose an aberrant feed-forward mechanism that increases levels of both eIF4E and C/EBPαp30 and likely contributes to MDS associated with NPM1 deficiency. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 7 (3) ◽  
pp. 351 ◽  
Author(s):  
AL Fowden

Hormones have an important role in the control of fetal growth. They act on both tissue accretion and differentiation and enable a precise and orderly pattern of growth to occur during late gestation. In part, their actions on growth may be mediated by other growth factors such as the insulin-like growth factors (IGFs). Insulin stimulates fetal growth by increasing the mitotic drive and nutrient availability for tissue accretion. It has little effect on tissue differentiation. In contrast, the main effects of cortisol in utero are on tissue differentiation and maturation. Cortisol appears to act directly on the cells to alter gene transcription or post-translational processing of the gene products. Cortisol may also initiate the transition from the fetal to the adult modes of growth regulation by inducing the switch from IGF-II to IGF-I gene expression in the fetal liver. Thyroxine affects both tissue accretion and differentiation in the fetus by a combination of metabolic and non-metabolic mechanisms. Pituitary growth hormone, on the other hand, appears to have little part in the control of fetal growth, unlike its role postnatally. Fetal hormones, therefore, promote growth and development in utero by altering both the metabolism and gene expression of the fetal tissues. These hormonal actions ensure that fetal growth rate is commensurate with the nutrient supply and that prepartum maturation occurs in preparation for extrauterine life.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 72-72
Author(s):  
Godfrey Grech ◽  
Montserrat Blazquez-Domingo ◽  
Andrea Kolbus ◽  
Hartmut Beug ◽  
Bob Lowenberg ◽  
...  

Abstract Erythroid progenitors can be expanded in vitro in the presence of erythropoietin (Epo), stem cell factor (SCF) and dexamethasone, while they differentiate to enucleated erythrocytes in presence of Epo only. Our study aims to identify (i) signaling pathways that control expansion of erythroid progenitors and (i) genes regulated by these signaling pathways. Since (i) SCF strongly activates phosphotidylinositol 3 kinase (PI3K) and (ii) inhibition of PI3K with LY294002 induces terminal differentiation of erythroid progenitors under Epo and SCF stimulation, SCF seems to enhance renewal divisions of erythroid progenitors via a PI3K-dependent mechanism. An important PI3K-dependent process in cell proliferation is regulation of mRNA translation. PI3K controls the activity of mTOR (mammalian target of rapamycin), whose activation results in phosphorylation of eIF4E (eukaryote Initiation Factor 4E)-binding protein (4E-BP). Fully phosphorylated 4E-BP releases eIF4E, which can subsequently bind eIF4G, the scaffolding protein of the eIF4F cap-binding and scanning complex. In particular mRNAs with a structured UTR (untranslated region) require optimal availability of eIF4E to be translated. SCF, but not Epo can induce full phosphorylation of 4E-BP and efficient formation of the eIF4F cap-binding complex. Overexpression of eIF4E inhibited erythroid differentiation as if SCF were present, indicating that SCF-induced release of eIF4E from 4E-BP is an important mechanism regulating the balance between progenitor expansion and differentiation. A major step in mRNA translation controlled by eIF4F is polysome recruitment. To identify genes whose expression is regulated by signaling-induced polysome recruitment, we compared total and polysome-bound mRNA from factor deprived and Epo-, SCF- or Epo plus SCF restimulated progenitors on gene-expression micro-arrays (Affymetrix). The profiling was performed with 4 biological replicates and candidate genes were selected using ANOVA. In subsequent cluster analysis we combined these data with (polysomal) expression profiles of differentiating erythroid cells. Thus we identified a cluster containing genes, upregulated in part or completely at the level of mRNA polysome recruitment and downregulated during erythroid differentiation. Targets involved in signal transduction and gene expression were analyzed in more detail. Polysome recruitment of 15/17 targets tested so far appeared to be dependent on PI3K activation and eIF4E expression. Constitutive expression of these targets in erythroid progenitors revealed that one target in particular was able to inhibit erythroid differentiation comparable to overexpression of eIF4E. This target was IGBP1 (Immunoglobulin binding protein 1). IGBP1 binds to and modulates the activity of the catalytic subunit of PP2A, a major cellular serine/threonine phosphatase, which also dephosphorylates 4E-BP. Overexpression of IGBP1 does not inhibit 4E-BP dephosphorylation in absence of factor, but enhances phosphorylation of 4E-BP in presence of Epo. Nevertheless, constitutive expression of IGBP1 does not increase polysome association of structured mRNAs. The multiple functions of PP2A suggest that the potent inhibition of erythroid differentiation by IGBP1 may be due to deregulation of several cellular mechanisms.


2001 ◽  
Vol 281 (3) ◽  
pp. E430-E439 ◽  
Author(s):  
Tracy G. Anthony ◽  
Ali K. Reiter ◽  
Joshua C. Anthony ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

The goal of these studies was to investigate the mechanisms by which amino acid supply regulates global rates of protein synthesis as well as the translation of ribosomal protein (rp) mRNAs in liver. In the experiments conducted, male weanling rats were trained over a 2-wk period to consume their daily food intake within 3 h. On day 14, rats were fed the control diet or an isocaloric, isonitrogenous diet lacking glycine, tryptophan, leucine, or the branched-chain amino acids (BCAA) for 1 h. Feeding Trp-, Leu-, or BCAA-deficient diets resulted in significant reductions in serum insulin, hepatic protein synthesis, eukaryotic initiation factor 2B (eIF2B) activity, and phosphorylation of eIF4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase (S6K1). Phosphorylation of eIF2α was inversely related to eIF2B activity under all conditions. Alterations in the hepatic synthesis of rp were assessed by changes in the distribution of rp (S4, S8, L26) mRNAs across sucrose density gradients and compared with non-rp (β-actin, albumin) mRNAs. In all dietary treatments, non-rp mRNAs were mostly polysome associated. Conversely, the proportion of rp mRNAs residing in polysomes was two- to fivefold less in rats fed diets lacking tryptophan, leucine, or BCAA compared with rats fed the control diet. Total hepatic abundance of all mRNAs examined did not differ among treatment groups. For all parameters examined, there were no differences between rats fed the glycine-deficient diet and rats fed the control diet. The data suggest that essential amino acid (EAA) deficiency inhibits global rates of liver protein synthesis via a block in translation initiation. Additionally, the translation of rp mRNAs is preferentially repressed in association with decreased S6K1 phosphorylation.


Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4754-4760 ◽  
Author(s):  
Melanie A. Hyatt ◽  
Helen Budge ◽  
David Walker ◽  
Terence Stephenson ◽  
Michael E. Symonds

The liver is an important metabolic and endocrine organ in the fetus, but the extent to which its hormone receptor sensitivity is developmentally regulated in early life is not fully established. Therefore, we examined developmental changes in mRNA abundance for the GH receptor (GHR) and prolactin receptor (PRLR) plus IGF-I and -II and their receptors. Fetal and postnatal sheep were sampled at either 80 or 140 d gestation, 1 or 30 d, or 6 months of age. The effect of maternal nutrient restriction between early gestation to midgestation (i.e. 28–80 d gestation, the time of early liver growth) on gene expression was also examined in the fetus and juvenile offspring. Gene expression for the GHR, PRLR, and IGF-I receptor increased through gestation peaking at birth, whereas IGF-I was maximal near to term. In contrast, IGF-II mRNA decreased between midgestation and late gestation to increase after birth, whereas IGF-II receptor remained unchanged. A substantial decline in mRNA abundance for GHR, PRLR, and IGF-I receptor then occurred up to 6 months. Maternal nutrient restriction reduced GHR and IGF-II receptor mRNA abundance in the fetus, but caused a precocious increase in the PRLR. Gene expression for IGF-I and -II were increased in juvenile offspring born to nutrient-restricted mothers. In conclusion, there are marked differences in the ontogeny and nutritional programming of specific hormones and their receptors involved in hepatic growth and development in the fetus. These could contribute to changes in liver function during adult life.


2002 ◽  
Vol 283 (4) ◽  
pp. E844-E852 ◽  
Author(s):  
Padmanabhan Anand ◽  
Joan M. Boylan ◽  
Yangsi Ou ◽  
Philip A. Gruppuso

Insulin has long been assigned a key role in the regulation of growth and metabolism during fetal life. Our prior observations indicated that hepatic insulin signaling is attenuated in the late-gestation fetal rat. Therefore, we studied the perinatal ontogeny of hepatic insulin signaling extending from phosphatidylinositol 3-kinase (PI3K) to the ribosome. Initial studies demonstrated markedly decreased insulin-mediated activation of ribosomal protein S6 kinase 1 (S6K1) in the fetus. We found a similar pattern in the regulation of Akt, a kinase upstream from S6K1. Insulin produced minimal activation of insulin receptor substrate (IRS)-1-associated PI3K activity in fetal liver. A modest IRS-2-associated response was seen in the fetus. However, levels of both IRS-1 and IRS-2 were very low in fetal liver relative to adult liver. IRS-1 content and insulin responsiveness of PI3K, Akt, and S6K1 showed a transition to the adult phenotype during the first several postnatal weeks. Examination of downstream insulin signaling to the translational apparatus showed marked attenuation, relative to the adult, of fetal hepatic insulin-mediated phosphorylation of 4E-BP1, the regulatory protein for the eukaryotic initiation factor eIF4E, and ribosomal protein S6. The mammalian target of rapamycin (mTOR), a key integrator of nutritional and metabolic regulation of translation, was present in low amounts, was hypophosphorylated, and was not insulin sensitive in the fetus. Our results indicate that protein synthesis during late-gestation liver development may be mTOR and insulin independent. Reexamination of the role of insulin in fetal liver physiology may be warranted.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
David Reyes-Camacho ◽  
Ester Vinyeta ◽  
Jose Francisco Pérez ◽  
Tobias Aumiller ◽  
Lourdes Criado ◽  
...  

Abstract Phytogenic actives (PA) are plant-derived natural bioactive compounds that may promote livestock health and well-being, as well as improve growth performance and production efficiency. The current study aims to evaluate their effects on sows and their offspring. Eighty-one hyperprolific sows (up to parity 7) were assigned to 3 experimental treatments. Control sows were offered a nonsupplemented diet during gestation and lactation, and treated sows were fed the control diet supplemented with 1 g/kg of a blend of PA (BPA) in lactation (L) or during gestation and lactation (GL). An evaluation was made of placental and milk maternal transfer of these BPA and colostrum–milk features, sows and piglets antioxidant status, reproductive performance (litter size), body weight (BW) changes, weaning-estrus interval, and litter performance. Finally, piglet´s jejunum gene expression was measured. The BPA supplementation during gestation (GL) increased the number of piglets born alive (P = 0.020) and reduced (P < 0.05) the newborn piglets BW, while there were no differences among treatments on the suckling (day 20) and weaned (day 7) piglets BW (P > 0.05). Dietary phytogenic volatile compounds reached GL placental fluid, and milk of L and GL sows (P < 0.05). Moreover, colostrum protein in GL and milk fat content in L and GL were increased (P < 0.05). Milk of GL showed inhibitory activity against Bacillus subtilis and Staphylococcus aureus (P < 0.05). Antioxidant status of GL sows showed an enhanced (P < 0.05) of catalase (CAT) and total antioxidant capacity levels at early gestation (day 35), whereas higher levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes at late gestation (day 110). Likewise, GL newborn piglets showed higher CAT levels, whereas both CAT and SOD levels in suckling piglets, as well as CAT, SOD, and GSH-Px in weaned piglets, were increased in L and GL (P < 0.05). Jejunum messenger ribonucleic acid abundance of suckling piglets in L and GL groups showed overexpression of barrier function MUC2, digestive enzyme IDO, and immune response PPARGC-α, TNF-α, TGF-β1, and IL-10 genes (P < 0.05). In conclusion, dietary BPA supplementation in hyperprolific sows increased the litter size (born alive) and improved the composition and bioactivity of colostrum and milk, besides, modified the antioxidant status of sows and their offspring, as well as the suckling piglets gut health gene expression. Several BPA volatile compounds were prenatal and postnatal maternally transferred (placental fluid and milk).


Sign in / Sign up

Export Citation Format

Share Document