scholarly journals The Role of Translation Initiation Regulation in Haematopoiesis

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.

Reproduction ◽  
2009 ◽  
Vol 137 (4) ◽  
pp. 595-617 ◽  
Author(s):  
Matthew Brook ◽  
Joel W S Smith ◽  
Nicola K Gray

Gametogenesis is a highly complex process that requires the exquisite temporal, spatial and amplitudinal regulation of gene expression at multiple levels. Translational regulation is important in a wide variety of cell types but may be even more prevalent in germ cells, where periods of transcriptional quiescence necessitate the use of post-transcriptional mechanisms to effect changes in gene expression. Consistent with this, studies in multiple animal models have revealed an essential role for mRNA translation in the establishment and maintenance of reproductive competence. While studies in humans are less advanced, emerging evidence suggests that translational regulation plays a similarly important role in human germ cells and fertility. This review highlights specific mechanisms of translational regulation that play critical roles in oogenesis by activating subsets of mRNAs. These mRNAs are activated in a strictly determined temporal manner via elements located within their 3′UTR, which serve as binding sites fortrans-acting factors. While we concentrate on oogenesis, these regulatory events also play important roles during spermatogenesis. In particular, we focus on the deleted in azoospermia-like (DAZL) family of proteins, recently implicated in the translational control of specific mRNAs in germ cells; their relationship with the general translation initiation factor poly(A)-binding protein (PABP) and the process of cytoplasmic mRNA polyadenylation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2432-2432
Author(s):  
Nirmalee Abayasekara ◽  
Michelle Levine ◽  
Niccolo Bolli ◽  
Hong Sun ◽  
Matthew Silver ◽  
...  

Abstract Abstract 2432 NPM1, is a highly conserved, ubiquitous nucleolar phosphoprotein that belongs to the nucleoplasmin family of nuclear chaperones. NPM1−/− mice die at mid-gestation (E11.5) from anemia, underscoring the gene's role in embryonic development. NPM1 is one of the most frequently mutated genes in AML. Mutations in NPM1 are found in 50% of normal karyotype AML patients, and mutant NPM1 (NPMc+) is aberrantly located in the cytoplasm of leukemic blasts in about 35% of all AML patients. Furthermore, NPM1 maps to a region on chromosome 5q that is the target of deletions in both de novo and therapy-associated human MDS. NPM1 thus acts as a haploinsufficient tumor suppressor in the hematological compartment, although the mechanism of its contribution to dysmyelopoiesis remains unknown. NPM-1+/− mice develop a hematological syndrome similar to that observed in human MDS, and develop AML over time. The NPM1 deficient model therefore provides a platform to interrogate the molecular basis of MDS. We identified nucleophosmin (NPM1) in a screen for protein binding partners of C/EBPα. C/EBPα is a single exon gene, but is expressed as two isoforms that arise by alternate translation start sites to yield a full length C/EBPα p42 and a truncated dominant negative C/EBPα p30 isoform. Translational control of isoform expression is orchestrated by a conserved upstream open reading frame (uORF) in the 5' untranslated region (5'UTR) and modulated by the translation initiation factors eIF4E and eIF2. We generated factor-dependent myeloid cell lines from the bone marrow of Npm1+/+ and Npm1+/− mice. These lines are IL-3-dependent and inducible toward neutrophil maturation with GM-CSF and/ or all- trans retinoic acid (ATRA). Neutrophils derived from MNPM1+/− cells display defective neutrophil-specific gene expression, including a cassette of C/EBPα-dependent genes. These observations led us to postulate that myeloid abnormalities in NPM1 deficiency reflect an aberrant NPM1-C/EBPα axis. We show that NPM1 haploinsufficiency upregulates eIF4E (eukaryotic initiation factor 4E) (but not eIF2), which binds the mRNA-Cap (m7-GTP) as part of the mRNA translation initiation complex, eIF4F. Increased eIF4E is observed in about 30% of all malignancies. Initial increased eIF4E levels in MNPM+/− cells likely reflect transcriptional activation by the oncoprotein c-Myc, protein levels of which are also elevated in MNPM1+/− cells. We propose that increased eIF4E then induces increased C/EBPαp30 translation. C/EBPαp30 is a dominant negative inhibitor of full length C/EBPαp42 activity and disrupts normal neutrophil development. Furthermore, we demonstrate that C/EBPαp30 but not C/EBPαp42, activates the eIF4E promoter. We propose a positive feedback loop, wherein increased C/EBPαp30 induced by eIF4E further increases the expression of eIF4E. Our data suggest that NPM1 deficiency modulates neutrophil-specific gene expression by altering C/EBPα. We propose an aberrant feed-forward mechanism that increases levels of both eIF4E and C/EBPαp30 and likely contributes to MDS associated with NPM1 deficiency. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 ◽  
Author(s):  
Vandana Yadav ◽  
Inayat Ullah Irshad ◽  
Hemant Kumar ◽  
Ajeet K. Sharma

Quantitative prediction on protein synthesis requires accurate translation initiation and codon translation rates. Ribosome profiling data, which provide steady-state distribution of relative ribosome occupancies along a transcript, can be used to extract these rate parameters. Various methods have been developed in the past few years to measure translation-initiation and codon translation rates from ribosome profiling data. In the review, we provide a detailed analysis of the key methods employed to extract the translation rate parameters from ribosome profiling data. We further discuss how these approaches were used to decipher the role of various structural and sequence-based features of mRNA molecules in the regulation of gene expression. The utilization of these accurate rate parameters in computational modeling of protein synthesis may provide new insights into the kinetic control of the process of gene expression.


2021 ◽  
Author(s):  
Parameet Kumar ◽  
Dharmendra Kumar Soni ◽  
Chaitali Sen ◽  
Mads B Larsen ◽  
Krystyna Mazan-Mamczarz ◽  
...  

Abstract Cystic Fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.


2021 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Maialen Sebastian-delaCruz ◽  
Itziar Gonzalez-Moro ◽  
Ane Olazagoitia-Garmendia ◽  
Ainara Castellanos-Rubio ◽  
Izortze Santin

mRNA stability influences gene expression and translation in almost all living organisms, and the levels of mRNA molecules in the cell are determined by a balance between production and decay. Maintaining an accurate balance is crucial for the correct function of a wide variety of biological processes and to maintain an appropriate cellular homeostasis. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of gene expression through different molecular mechanisms, including mRNA stabilization. In this review we provide an overview on the molecular mechanisms by which lncRNAs modulate mRNA stability and decay. We focus on how lncRNAs interact with RNA binding proteins and microRNAs to avoid mRNA degradation, and also on how lncRNAs modulate epitranscriptomic marks that directly impact on mRNA stability.


2020 ◽  
Vol 21 (5) ◽  
pp. 1592
Author(s):  
Han Kyoung Choe ◽  
Jun Cho

Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vedrana Andric ◽  
Alicia Nevers ◽  
Ditipriya Hazra ◽  
Sylvie Auxilien ◽  
Alexandra Menant ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.


2021 ◽  
Vol 78 (5) ◽  
pp. 347-359
Author(s):  
E.L. Kordyum ◽  
◽  
D.V. Dubyna ◽  

In recent decades, knowledge about the role of epigenetic regulation of gene expression in plant responses to external stimuli and in adaptation of plants to adverse environmental fluctuations have extended significantly. DNA methylation is considered as the main molecular mechanism that provides genomic information and contributes to the understanding of the molecular basis of phenotypic variations based on epigenetic modifications. Unfortunately, the vast majority of research in this area has been performed on the model species Arabidopsis thaliana. The development of the methylation-sensitive amplified polymorphism (MSAP) method has made it possible to implement the large-scale detection of DNA methylation alterations in wild non-model and agricultural plants with large and highly repetitive genomes in natural and manipulated habitats. The article presents current information on DNA methylation in species of natural communities and crops and its importance in plant development and adaptive phenotypic plasticity, along with brief reviews of current ideas about adaptive phenotypic plasticity and epigenetic regulation of gene expression. The great potential of further studies of the epigenetic role in phenotypic plasticity of a wide range of non-model species in natural populations and agrocenoses for understanding the molecular mechanisms of plant existence in the changing environment in onto- and phylogeny, directly related to the key tasks of forecasting the effects of global warming and crop selection, is emphasized. Specific taxa of the Ukrainian flora, which, in authors’ opinion, are promising and interesting for this type of research, are recommended.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parameet Kumar ◽  
Dharmendra Kumar Soni ◽  
Chaitali Sen ◽  
Mads B. Larsen ◽  
Krystyna Mazan-Mamczarz ◽  
...  

AbstractCystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.


2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Victoria Landwehr ◽  
Martin Milanov ◽  
Jiang Hong ◽  
Hans-Georg Koch

The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.


Sign in / Sign up

Export Citation Format

Share Document