scholarly journals Voluntary wheel running attenuates lipopolysaccharide-induced liver inflammation in mice

2016 ◽  
Vol 310 (10) ◽  
pp. R934-R942 ◽  
Author(s):  
Willem T. Peppler ◽  
Zachary G. Anderson ◽  
Charles D. Sutton ◽  
R. Scott Rector ◽  
David C. Wright

Sepsis induces an acute inflammatory response in the liver, which can lead to organ failure and death. Given the anti-inflammatory effects of exercise, we hypothesized that habitual physical activity could protect against acute sepsis-induced liver inflammation via mechanisms, including heat shock protein (HSP) 70/72. Male C57BL/6J mice ( n = 80, ∼8 wk of age) engaged in physical activity via voluntary wheel running (VWR) or cage control (SED) for 10 wk. To induce sepsis, we injected (2 mg/kg ip) LPS or sterile saline (SAL), and liver was harvested 6 or 12 h later. VWR attenuated increases in body and epididymal adipose tissue mass, improved glucose tolerance, and increased liver protein content of PEPCK ( P < 0.05). VWR attenuated increases in LPS-induced IL-6 signaling and mRNA expression of other inflammatory markers (TNF-α, chemokine C-C motif ligand 2, inducible nitric oxide synthase, IL-10, IL-1β) in the liver; however, this was not reflected at the whole body level, as systemic markers of inflammation were similar between SED and VWR. Insulin tolerance was greater in VWR compared with SED at 6 but not 12 h after LPS. The protective effect of VWR occurred in parallel with increases in the liver protein content of HSP70/72, a molecular chaperone that can protect against inflammatory challenges. This study provides novel evidence that physical activity protects against the inflammatory cascade induced by LPS in the liver and that these effects may be mediated via HSP70/72.

1999 ◽  
Vol 86 (4) ◽  
pp. 1374-1380 ◽  
Author(s):  
Deborah A. Podolin ◽  
Yuren Wei ◽  
Michael J. Pagliassotti

The purpose of the present study was to determine the effects of diet composition and exercise on glycerol and glucose appearance rate (Ra) and on nonglycerol gluconeogenesis (Gneo) in vivo. Male Wistar rats were fed a high-starch diet (St, 68% of energy as cornstarch, 12% corn oil) for a 2-wk baseline period and then were randomly assigned to one of four experimental groups: St ( n = 7), high-fat (HF; 35% cornstarch, 45% corn oil; n = 8), St with free access to exercise wheels (StEx; n = 7), and HF with free access to exercise wheels (HFEx; n = 7). After 8 wk, glucose Rawhen using [3-3H]glucose, glycerol Rawhen using [2H5]glycerol (estimate of whole body lipolysis), and [3-13C]alanine incorporation into glucose (estimate of alanine Gneo) were determined. Body weight and fat pad mass were significantly ( P < 0.05) decreased in exercise vs. sedentary animals only. The average amount of exercise was not significantly different between StEx (3,212 ± 659 m/day) and HFEx (3,581 ± 765 m/day). The ratio of glucose to alanine enrichment and absolute glycerol Ra(μmol/min) were higher ( P < 0.05) in HF and HFEx compared with St and StEx rats. In separate experiments, the ratio of3H in C-2 to C-6 of glucose from3H2O (estimate of Gneo from pyruvate) was also higher ( P < 0.05) in HF ( n = 5) and HFEx ( n = 5), compared with St ( n = 5) and StEx ( n = 5) rats. Voluntary wheel running did not significantly increase estimated alanine or pyruvate Gneo or absolute glycerol Ra. Voluntary wheel running increased ( P< 0.05) glycerol Rawhen normalized to fat pad mass. These data suggest that a high-fat diet can increase in vivo Gneo from precursors that pass through pyruvate. They also suggest that changes in the absolute rate of glycerol Ramay contribute to the high-fat diet-induced increase in Gneo.


2007 ◽  
Vol 32 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Karyn A. Esser ◽  
Wen Su ◽  
Sergey Matveev ◽  
Vicki Wong ◽  
Li Zeng ◽  
...  

Physical activity reduces cardiovascular disease related mortality in diabetic patients. However, it is unknown if the diabetic state reduces voluntary physical activity and, if so, if the voluntary physical activity at the reduced level is sufficient to improve cardiovascular risk factors. To address these two specific questions, we investigated voluntary wheel running performance in an obese and type 2 diabetic mouse model, the db/db mice. In addition, we determined the effects of running on body mass, blood glucose, insulin, plasma free fatty acids, cholesterol, and vascular smooth muscle hyper-contractility. Our results showed that daily running distance, time, and speed were significantly reduced in the db/db mice to about 23%, 32%, and 71%, respectively, of that in non-diabetic control mice. However, this low level of running was sufficient to induce a reduction in the vascular smooth muscle hyper-contractility, cholesterol, and some plasma free fatty acids, as well as to delay the decrease in blood insulin. These changes occurred in the absence of weight loss and a detectable decrease in blood glucose. Thus, the results of this study demonstrated that voluntary wheel running activity was dramatically reduced in db/db mice. However, the low levels of running were beneficial, in the absence of effects on obesity or blood glucose, with significant reductions in cardiovascular risk factors and potential delays in β-cell dysfunction.


2020 ◽  
Author(s):  
Rachel P. Tillage ◽  
Genevieve E. Wilson ◽  
L. Cameron Liles ◽  
Philip V. Holmes ◽  
David Weinshenker

ABSTRACTThe neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in both humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise. Galanin expression is elevated in the LC by chronic exercise, and blockade of galanin transmission attenuates exercise-induced stress resilience. However, most research on this topic has been done in rats, so it is unclear whether the relationship between exercise and galanin is species-specific. Moreover, use of intracerebroventricular galanin receptor antagonists in prior studies precluded defining a causal role for LC-derived galanin specifically. Therefore, the goals of this study were twofold. First, we investigated whether physical activity (chronic voluntary wheel running) increases stress resilience and galanin expression in the LC of mice. Next, we used transgenic mice that overexpress galanin in noradrenergic neurons (Gal OX) to determine how chronically elevated noradrenergic-derived galanin, alone, alters anxiogenic-like responses to stress. We found that three weeks of ad libitum access to a running wheel in their home cage increased galanin mRNA in the LC of mice and conferred resilience to a stressor. The effects of exercise were phenocopied by galanin overexpression in noradrenergic neurons, and Gal OX mice were resistant to the anxiogenic effect of optogenetic LC activation. Together, these findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.Significance statementUnderstanding the neurobiological mechanisms underlying behavioral responses to stress is necessary to improve treatments for stress-related neuropsychiatric disorders. Increased physical activity is associated with stress resilience in humans, but the neurobiological mechanisms underlying this effect are not clear. Here we investigate the anxiolytic potential of the neuropeptide galanin from the main noradrenergic nucleus, the locus coeruleus (LC). We show that chronic voluntary wheel running in mice galanin expression in the LC and stress resilience. Furthermore, we show that genetic overexpression of galanin in noradrenergic neurons confers resilience to the anxiogenic effects of foot shock and optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.


2019 ◽  
Vol 359 ◽  
pp. 95-103 ◽  
Author(s):  
Jenna R. Lee ◽  
Melissa A. Tapia ◽  
Jane R. Nelson ◽  
Justin M. Moore ◽  
Graydon B. Gereau ◽  
...  

2014 ◽  
Vol 117 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Abdoulaye Diane ◽  
Donna F. Vine ◽  
James C. Russell ◽  
C. Donald Heth ◽  
W. David Pierce ◽  
...  

We hypothesized the cannabinoid-1 receptor and leptin receptor (ObR) operate synergistically to modulate metabolic, neuroendocrine, and behavioral responses of animals exposed to a survival challenge (food restriction and wheel running). Obese-prone (OP) JCR:LA- cp rats, lacking functional ObR, and lean-prone (LP) JCR:LA- cp rats (intact ObR) were assigned to OP-C and LP-C (control) or CBR1-antagonized (SR141716, 10 mg/kg body wt in food) OP-A and LP-A groups. After 32 days, all rats were exposed to 1.5-h daily meals without the drug and 22.5-h voluntary wheel running, a survival challenge that normally culminates in activity-based anorexia (ABA). Rats were removed from the ABA protocol when body weight reached 75% of entry weight (starvation criterion) or after 14 days (survival criterion). LP-A rats starved faster (6.44 ± 0.24 days) than LP-C animals (8.00 ± 0.29 days); all OP rats survived the ABA challenge. LP-A rats lost weight faster than animals in all other groups ( P < 0.001). Consistent with the starvation results, LP-A rats increased the rate of wheel running more rapidly than LP-C rats ( P = 0.001), with no difference in hypothalamic and primary neural reward serotonin levels. In contrast, OP-A rats showed suppression of wheel running compared with the OP-C group ( days 6–14 of ABA challenge, P < 0.001) and decreased hypothalamic and neural reward serotonin levels ( P < 0.01). Thus there is an interrelationship between cannabinoid-1 receptor and ObR pathways in regulation of energy balance and physical activity. Effective clinical measures to prevent and treat a variety of disorders will require understanding of the mechanisms underlying these effects.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Skaria ◽  
K Mitchell ◽  
J A Fischer ◽  
W Born ◽  
M Gassmann ◽  
...  

Abstract Background Alpha calcitonin gene-related peptide (αCGRP) is one of the strongest vasodilators and, as such, is cardioprotective in chronic hypertension when reducing the associated elevated blood pressure. However, we hypothesize that endogenous, physical activity-induced αCGRP has blood pressure independent cardioprotective effects in chronic hypertension. Methods Chronic hypertension was induced in WT and αCGRP−/− mice by one-kidney one-clip surgery. Chronic hypertensive WT and αCGRP−/− mice lived sedentarily or performed voluntary wheel running and were treated simultaneously with either vehicle, αCGRP or αCGRP receptor antagonist CGRP8–37. Cardiac function and tissue phenotype were evaluated echocardiographically and by ddPCR, Western blotting and histology, respectively. Results Blood pressure was similar among all hypertensive experimental groups. Endogenous αCGRP limited pathological cardiac remodeling and symptomatic heart failure already in sedentary, chronic hypertensive WT mice. In these mice, voluntary wheel running significantly improved cardiac tissue phenotype and function, that was abolished by CGRP8–37 treatment. In αCGRP−/− mice, αCGRP treatment, in contrast to voluntary wheel running, improved cardiac tissue phenotype and function. Specific inhibition of proliferation and myofibroblast differentiation of primary murine cardiac fibroblasts by αCGRP suggests involvement of these cells in αCGRP-mediated blunting of pathological cardiac remodeling. Conclusion Endogenous, physical activity-induced αCGRP has blood pressure independent cardioprotective effects and is crucial for maintaining cardiac function in chronic hypertension. Consequently, permanently inhibiting endogenous αCGRP signaling, as currently approved for migraine prophylaxis, could endanger hypertensive patients. Acknowledgement/Funding Swiss National Science Foundation, Novartis Foundation for Medical-biological Research


2015 ◽  
Vol 9 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Adam Sierakowiak ◽  
Anna Mattsson ◽  
Marta Gómez-Galán ◽  
Teresa Feminía ◽  
Lisette Graae ◽  
...  

Accumulating in vivo and ex vivo evidences show that humans suffering from depression have decreased hippocampal volume and altered spine density. Moreover, physical activity has an antidepressant effect in humans and in animal models, but to what extent physical activity can affect hippocampal volume and spine numbers in a model for depression is not known. In this study we analyzed whether physical activity affects hippocampal volume and spine density by analyzing a rodent genetic model of depression, Flinders Sensitive Line Rats (FSL), with Magnetic Resonance Imaging (MRI) and ex vivo Golgi staining. We found that physical activity in the form of voluntary wheel running during 5 weeks increased hippocampal volume. Moreover, runners also had larger numbers of thin spines in the dentate gyrus. Our findings support that voluntary wheel running, which is antidepressive in FSL rats, is associated with increased hippocampal volume and spine numbers.


2019 ◽  
Vol 126 (2) ◽  
pp. 502-510 ◽  
Author(s):  
John J. Guers ◽  
Lauren Kasecky-Lardner ◽  
William B. Farquhar ◽  
David G. Edwards ◽  
Shannon L. Lennon

Diets high in salt can lead to endothelial dysfunction, a nontraditional risk factor for cardiovascular disease (CVD). Exercise is known to reduce CVD risk; however, it remains unknown whether chronic physical activity can attenuate salt-induced endothelial dysfunction independent of blood pressure (BP) and whether these changes are due to an upregulation in endogenous antioxidants. Eight-week-old Sprague-Dawley rats were fed either a normal (NS; 0.49%)- or a high (HS; 4.0%)-salt diet and further divided into voluntary wheel running (NS-VWR, HS-VWR) and sedentary (NS, HS) groups for 6 wk. BP was measured weekly and remained unchanged within groups ( P = 0.373). Endothelium-dependent relaxation (EDR) was impaired in the femoral artery of HS compared with NS (38.6 ± 4.0% vs. 65.0 ± 3.6%; P = 0.013) animals, whereas it was not different between NS and HS-VWR (73.4 ± 6.4%; P = 0.273) animals. Incubation with the antioxidants TEMPOL ( P = 0.024) and apocynin ( P = 0.013) improved EDR in HS animals, indicating a role for reactive oxygen species (ROS). Wheel running upregulated the antioxidant superoxide dismutase-2 (SOD-2) ( P = 0.011) under HS conditions and lowered NOX4 and Gp91-phox, two subunits of NADPH oxidase. Wheel running elevated phosphorylated endothelial nitric oxide synthase (eNOS) ( P = 0.014) in HS-fed rats, demonstrating a role for physical activity and eNOS activity under HS conditions. Finally, there was a reduction in EDR ( P = 0.038) when femoral arteries from NS-VWR animals were incubated with TEMPOL or apocynin, suggesting there may be a critical level of ROS needed to maintain endothelial function. In summary, physical activity protected HS-fed rats from reductions in endothelial function, likely through increased SOD-2 levels and reduced oxidative stress. NEW & NOTEWORTHY Our data suggest that voluntary wheel running can prevent impairments in endothelium-dependent relaxation in the femoral artery of rats fed a high-salt diet. This appears to be independent of blood pressure and mediated through a decrease in expression of NADPH oxidases as a result of physical activity. These data suggest that increased chronic physical activity can protect the vasculature from a diet high in salt, likely through a reduction in oxidative stress.


2015 ◽  
Vol 3 (11) ◽  
pp. e12619 ◽  
Author(s):  
Hayden W. Hyatt ◽  
Ryan G. Toedebusch ◽  
Greg Ruegsegger ◽  
C. Brooks Mobley ◽  
Carlton D. Fox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document