The physiology and pathophysiology of the neural control of the counterregulatory response

2012 ◽  
Vol 302 (2) ◽  
pp. R215-R223 ◽  
Author(s):  
Craig Beall ◽  
Michael L. Ashford ◽  
Rory J. McCrimmon

Despite significant technological and pharmacological advancements, insulin replacement therapy fails to adequately replicate β-cell function, and so glucose control in type 1 diabetes mellitus (T1D) is frequently erratic, leading to periods of hypoglycemia. Moreover, the counterregulatory response (CRR) to falling blood glucose is impaired in diabetes, leading to an increased risk of severe hypoglycemia. It is now clear that the brain plays a significant role in the development of defective glucose counterregulation and impaired hypoglycemia awareness in diabetes. In this review, the basic intracellular glucose-sensing mechanisms are discussed, as well as the neural networks that respond to and coordinate the body's response to a hypoglycemic challenge. Subsequently, we discuss how the body responds to repeated hypoglycemia and how these adaptations may explain, at least in part, the development of impaired glucose counterregulation in diabetes.

2010 ◽  
Vol 34 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Christian Pfleger ◽  
Guido Meierhoff ◽  
Hubert Kolb ◽  
Nanette C. Schloot

2012 ◽  
Vol 2 (6) ◽  
pp. 241-254 ◽  
Author(s):  
Zerrin Atakan

Cannabis is a complex plant, with major compounds such as delta-9-tetrahydrocannabinol and cannabidiol, which have opposing effects. The discovery of its compounds has led to the further discovery of an important neurotransmitter system called the endocannabinoid system. This system is widely distributed in the brain and in the body, and is considered to be responsible for numerous significant functions. There has been a recent and consistent worldwide increase in cannabis potency, with increasing associated health concerns. A number of epidemiological research projects have shown links between dose-related cannabis use and an increased risk of development of an enduring psychotic illness. However, it is also known that not everyone who uses cannabis is affected adversely in the same way. What makes someone more susceptible to its negative effects is not yet known, however there are some emerging vulnerability factors, ranging from certain genes to personality characteristics. In this article we first provide an overview of the biochemical basis of cannabis research by examining the different effects of the two main compounds of the plant and the endocannabinoid system, and then go on to review available information on the possible factors explaining variation of its effects upon different individuals.


2018 ◽  
Vol 128 (8) ◽  
pp. 3460-3474 ◽  
Author(s):  
Lorraine Yeo ◽  
Alyssa Woodwyk ◽  
Sanjana Sood ◽  
Anna Lorenc ◽  
Martin Eichmann ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 650-650
Author(s):  
Jin Cheng ◽  
Min Yin ◽  
Xiaohan Tang ◽  
Xiang Yan ◽  
Yuting Xie ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Anne Julie Overgaard ◽  
Jens Otto Broby Madsen ◽  
Flemming Pociot ◽  
Jesper Johannesen ◽  
Joachim Størling

Abstract Background Type 1 diabetes (T1D) is caused by immune-mediated destruction of the β-cells. After initiation of insulin therapy many patients experience a period of improved residual β-cell function leading to partial disease remission. Cytokines are important immune-modulatory molecules and contribute to β-cell damage in T1D. The patterns of systemic circulating cytokines during T1D remission are not clear but may constitute biomarkers of disease status and progression. In this study, we investigated if the plasma levels of various pro- and anti-inflammatory cytokines around time of diagnosis were predictors of remission and residual β-cell function in children with T1D followed for one year after disease onset. Methods In a cohort of 63 newly diagnosed children (33% females) with T1D with a mean age of 11.3 years (3.3–17.7), ten cytokines were measured of which eight were detectable in plasma samples by Mesoscale Discovery multiplex technology at study start and after 6 and 12 months. Linear regression models were used to evaluate association of cytokines with stimulated C-peptide. Results Systemic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-2 and IL-6 inversely correlated with stimulated C-peptide levels over the entire study (P < 0.05). The concentrations of TNFα and IL-10 at study start predicted stimulated C-peptide level at 6 months (P = 0.011 and P = 0.043, respectively, adjusted for sex, age, HbA1c and stage of puberty). Conclusions In recent-onset T1D, systemic cytokine levels, and in particular that of TNFα, correlate with residual β-cell function and may serve as prognostic biomarkers of disease remission and progression to optimize treatment strategies. Trial Registration The study was performed according to the criteria of the Helsinki II Declaration and was approved by the Danish Capital Region Ethics Committee on Biomedical Research Ethics (journal number H-3-2014-052). The parents of all participants gave written consent.


Diabetes Care ◽  
2020 ◽  
Vol 43 (10) ◽  
pp. 2362-2370 ◽  
Author(s):  
Guy S. Taylor ◽  
Kieran Smith ◽  
Tess E. Capper ◽  
Jadine H. Scragg ◽  
Ayat Bashir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document