Model of functional cardiac aging: young adult mice with mild overexpression of serum response factor

2003 ◽  
Vol 285 (3) ◽  
pp. R552-R560 ◽  
Author(s):  
Xiaomin Zhang ◽  
Gohar Azhar ◽  
Maxwell C. Furr ◽  
Ying Zhong ◽  
Jeanne Y. Wei

Serum response factor (SRF) is an important transcription factor that may have a role in the maintenance of cardiac structure and function. The level of SRF mRNA expression increases ∼16% in the hearts of mice during adult aging. To model the effect of mild SRF elevation in the aging heart, transgenic mice with low levels of SRF overexpression were generated. By 6 mo of age, the transgenic mice had a 19% increase of heart-to-body weight ratio compared with nontransgenic mice. In addition, they had a 12% increase in myocyte size, a 6.7% increase in collagen deposition, and altered gene expression of a number of muscle-specific and cardiac genes. Doppler echocardiography revealed that these transgenic mice had increased left ventricular wall thickness and decreased left ventricular (LV) volumes, increased LV stiffness with 20% reduction in early diastolic LV filling (peak E), and 35% decline in peak E-to-peak A (late diastolic filling) ratio. The observed changes, especially those in the E/A ratio, are similar to those seen clinically in late life as a part of human adult myocardial aging.

2001 ◽  
Vol 280 (4) ◽  
pp. H1782-H1792 ◽  
Author(s):  
Xiaomin Zhang ◽  
Gohar Azhar ◽  
Jianyuan Chai ◽  
Pamela Sheridan ◽  
Koichiro Nagano ◽  
...  

Serum response factor (SRF), a member of the MCM1, agamous, deficiens, SRF (MADS) family of transcriptional activators, has been implicated in the transcriptional control of a number of cardiac muscle genes, including cardiac α-actin, skeletal α-actin, α-myosin heavy chain (α-MHC), and β-MHC. To better understand the in vivo role of SRF in regulating genes responsible for maintenance of cardiac function, we sought to test the hypothesis that increased cardiac-specific SRF expression might be associated with altered cardiac morphology and function. We generated transgenic mice with cardiac-specific overexpression of the human SRF gene. The transgenic mice developed cardiomyopathy and exhibited increased heart weight-to-body weight ratio, increased heart weight, and four-chamber dilation. Histological examination revealed cardiomyocyte hypertrophy, collagen deposition, and interstitial fibrosis. SRF overexpression altered the expression of SRF-regulated genes and resulted in cardiac muscle dysfunction. Our results demonstrate that sustained overexpression of SRF, in the absence of other stimuli, is sufficient to induce cardiac change and suggest that SRF is likely to be one of the downstream effectors of the signaling pathways involved in mediating cardiac hypertrophy.


1997 ◽  
Vol 17 (4) ◽  
pp. 2266-2278 ◽  
Author(s):  
S Kim ◽  
H S Ip ◽  
M M Lu ◽  
C Clendenin ◽  
M S Parmacek

The SM22alpha promoter has been used as a model system to define the molecular mechanisms that regulate smooth muscle cell (SMC) specific gene expression during mammalian development. The SM22alpha gene is expressed exclusively in vascular and visceral SMCs during postnatal development and is transiently expressed in the heart and somites during embryogenesis. Analysis of the SM22alpha promoter in transgenic mice revealed that 280 bp of 5' flanking sequence is sufficient to restrict expression of the lacZ reporter gene to arterial SMCs and the myotomal component of the somites. DNase I footprint and electrophoretic mobility shift analyses revealed that the SM22alpha promoter contains six nuclear protein binding sites (designated smooth muscle elements [SMEs] -1 to -6, respectively), two of which bind serum response factor (SRF) (SME-1 and SME-4). Mutational analyses demonstrated that a two-nucleotide substitution that selectively eliminates SRF binding to SME-4 decreases SM22alpha promoter activity in arterial SMCs by approximately 90%. Moreover, mutations that abolish binding of SRF to SME-1 and SME-4 or mutations that eliminate each SME-3 binding activity totally abolished SM22alpha promoter activity in the arterial SMCs and somites of transgenic mice. Finally, we have shown that a multimerized copy of SME-4 (bp -190 to -110) when linked to the minimal SM22alpha promoter (bp -90 to +41) is necessary and sufficient to direct high-level transcription in an SMC lineage-restricted fashion. Taken together, these data demonstrate that distinct transcriptional regulatory programs control SM22alpha gene expression in arterial versus visceral SMCs. Moreover, these data are consistent with a model in which combinatorial interactions between SRF and other transcription factors that bind to SME-4 (and that bind directly to SRF) activate transcription of the SM22alpha gene in arterial SMCs.


2001 ◽  
Vol 276 (43) ◽  
pp. 40033-40040 ◽  
Author(s):  
Xiaomin Zhang ◽  
Jianyuan Chai ◽  
Gohar Azhar ◽  
Pamela Sheridan ◽  
Ana M. Borras ◽  
...  

2017 ◽  
Vol 29 (2) ◽  
pp. 416-422 ◽  
Author(s):  
Bing Guo ◽  
Qing Lyu ◽  
Orazio J. Slivano ◽  
Ronald Dirkx ◽  
Christine K. Christie ◽  
...  

Podocytes contain an intricate actin cytoskeleton that is essential for the specialized function of this cell type in renal filtration. Serum response factor (SRF) is a master transcription factor for the actin cytoskeleton, but the in vivo expression and function of SRF in podocytes are unknown. We found that SRF protein colocalizes with podocyte markers in human and mouse kidneys. Compared with littermate controls, mice in which the Srf gene was conditionally inactivated with NPHS2-Cre exhibited early postnatal proteinuria, hypoalbuminemia, and azotemia. Histologic changes in the mutant mice included glomerular capillary dilation and mild glomerulosclerosis, with reduced expression of multiple canonical podocyte markers. We also noted tubular dilation, cell proliferation, and protein casts as well as reactive changes in mesangial cells and interstitial inflammation. Ultrastructure analysis disclosed foot process effacement with loss of slit diaphragms. To ascertain the importance of SRF cofactors in podocyte function, we disabled the myocardin-related transcription factor A and B genes. Although loss of either SRF cofactor alone had no observable effect in the kidney, deficiency of both recapitulated the Srf-null phenotype. These results establish a vital role for SRF and two SRF cofactors in the maintenance of podocyte structure and function.


2021 ◽  
Vol 8 (5) ◽  
pp. 58
Author(s):  
Hazel Aberdeen ◽  
Kaela Battles ◽  
Ariana Taylor ◽  
Jeranae Garner-Donald ◽  
Ana Davis-Wilson ◽  
...  

The fastest growing demographic in the U.S. at the present time is those aged 65 years and older. Accompanying advancing age are a myriad of physiological changes in which reserve capacity is diminished and homeostatic control attenuates. One facet of homeostatic control lost with advancing age is glucose tolerance. Nowhere is this more accentuated than in the high proportion of older Americans who are diabetic. Coupled with advancing age, diabetes predisposes affected subjects to the onset and progression of cardiovascular disease (CVD). In the treatment of type 2 diabetes, hypoglycemic episodes are a frequent clinical manifestation, which often result in more severe pathological outcomes compared to those observed in cases of insulin resistance, including premature appearance of biomarkers of senescence. Unfortunately, molecular mechanisms of hypoglycemia remain unclear and the subject of much debate. In this review, the molecular basis of the aging vasculature (endothelium) and how glycemic flux drives the appearance of cardiovascular lesions and injury are discussed. Further, we review the potential role of the serum response factor (SRF) in driving glycemic flux-related cellular signaling through its association with various proteins.


Sign in / Sign up

Export Citation Format

Share Document